Abstract:Crowdsourcing platforms use various truth discovery algorithms to aggregate annotations from multiple labelers. In an online setting, however, the main challenge is to decide whether to ask for more annotations for each item to efficiently trade off cost (i.e., the number of annotations) for quality of the aggregated annotations. In this paper, we propose a novel approach for general complex annotation (such as bounding boxes and taxonomy paths), that works in an online crowdsourcing setting. We prove that the expected average similarity of a labeler is linear in their accuracy \emph{conditional on the reported label}. This enables us to infer reported label accuracy in a broad range of scenarios. We conduct extensive evaluations on real-world crowdsourcing data from Meta and show the effectiveness of our proposed online algorithms in improving the cost-quality trade-off.
Abstract:Online retailers execute a very large number of price updates when compared to brick-and-mortar stores. Even a few mis-priced items can have a significant business impact and result in a loss of customer trust. Early detection of anomalies in an automated real-time fashion is an important part of such a pricing system. In this paper, we describe unsupervised and supervised anomaly detection approaches we developed and deployed for a large-scale online pricing system at Walmart. Our system detects anomalies both in batch and real-time streaming settings, and the items flagged are reviewed and actioned based on priority and business impact. We found that having the right architecture design was critical to facilitate model performance at scale, and business impact and speed were important factors influencing model selection, parameter choice, and prioritization in a production environment for a large-scale system. We conducted analyses on the performance of various approaches on a test set using real-world retail data and fully deployed our approach into production. We found that our approach was able to detect the most important anomalies with high precision.