Abstract:Network quantization generally converts full-precision weights and/or activations into low-bit fixed-point values in order to accelerate an inference process. Recent approaches to network quantization further discretize the gradients into low-bit fixed-point values, enabling an efficient training. They typically set a quantization interval using a min-max range of the gradients or adjust the interval such that the quantization error for entire gradients is minimized. In this paper, we analyze the quantization error of gradients for the low-bit fixed-point training, and show that lowering the error for large-magnitude gradients boosts the quantization performance significantly. Based on this, we derive an upper bound of quantization error for the large gradients in terms of the quantization interval, and obtain an optimal condition for the interval minimizing the quantization error for large gradients. We also introduce an interval update algorithm that adjusts the quantization interval adaptively to maintain a small quantization error for large gradients. Experimental results demonstrate the effectiveness of our quantization method for various combinations of network architectures and bit-widths on various tasks, including image classification, object detection, and super-resolution.
Abstract:Post-training quantization (PTQ) is an efficient model compression technique that quantizes a pretrained full-precision model using only a small calibration set of unlabeled samples without retraining. PTQ methods for convolutional neural networks (CNNs) provide quantization results comparable to full-precision counterparts. Directly applying them to vision transformers (ViTs), however, incurs severe performance degradation, mainly due to the differences in architectures between CNNs and ViTs. In particular, the distribution of activations for each channel vary drastically according to input instances, making PTQ methods for CNNs inappropriate for ViTs. To address this, we introduce instance-aware group quantization for ViTs (IGQ-ViT). To this end, we propose to split the channels of activation maps into multiple groups dynamically for each input instance, such that activations within each group share similar statistical properties. We also extend our scheme to quantize softmax attentions across tokens. In addition, the number of groups for each layer is adjusted to minimize the discrepancies between predictions from quantized and full-precision models, under a bit-operation (BOP) constraint. We show extensive experimental results on image classification, object detection, and instance segmentation, with various transformer architectures, demonstrating the effectiveness of our approach.