Abstract:In the ever-changing and dynamic realm of high-end fashion marketplaces, providing accurate and personalized size recommendations has become a critical aspect. Meeting customer expectations in this regard is not only crucial for ensuring their satisfaction but also plays a pivotal role in driving customer retention, which is a key metric for the success of any fashion retailer. We propose a novel sequence classification approach to address this problem, integrating implicit (Add2Bag) and explicit (ReturnReason) user signals. Our approach comprises two distinct models: one employs LSTMs to encode the user signals, while the other leverages an Attention mechanism. Our best model outperforms SFNet, improving accuracy by 45.7%. By using Add2Bag interactions we increase the user coverage by 24.5% when compared with only using Orders. Moreover, we evaluate the models' usability in real-time recommendation scenarios by conducting experiments to measure their latency performance.
Abstract:The evaluation of Indoor Positioning Systems (IPS) mostly relies on local deployments in the researchers' or partners' facilities. The complexity of preparing comprehensive experiments, collecting data, and considering multiple scenarios usually limits the evaluation area and, therefore, the assessment of the proposed systems. The requirements and features of controlled experiments cannot be generalized since the use of the same sensors or anchors density cannot be guaranteed. The dawn of datasets is pushing IPS evaluation to a similar level as machine-learning models, where new proposals are evaluated over many heterogeneous datasets. This paper proposes a way to evaluate IPSs in multiple scenarios, that is validated with three use cases. The results prove that the proposed aggregation of the evaluation metric values is a useful tool for high-level comparison of IPSs.