Abstract:Symbolic regression corresponds to an ensemble of techniques that allow to uncover an analytical equation from data. Through a closed form formula, these techniques provide great advantages such as potential scientific discovery of new laws, as well as explainability, feature engineering as well as fast inference. Similarly, deep learning based techniques has shown an extraordinary ability of modeling complex patterns. The present paper aims at applying a recent end-to-end symbolic regression technique, i.e. the equation learner (EQL), to get an analytical equation for wind speed forecasting. We show that it is possible to derive an analytical equation that can achieve reasonable accuracy for short term horizons predictions only using few number of features.
Abstract:Due to the development of deep learning techniques applied to satellite imagery, weather forecasting that uses remote sensing data has also been the subject of major progress. The present paper investigates multiple steps ahead frame prediction for coastal sea elements in the Netherlands using U-Net based architectures. Hourly data from the Copernicus observation programme spanned over a period of 2 years has been used to train the models and make the forecasting, including seasonal predictions. We propose a variation of the U-Net architecture and also extend this novel model using residual connections, parallel convolutions and asymmetric convolutions in order to propose three additional architectures. In particular, we show that the architecture equipped with parallel and asymmetric convolutions as well as skip connections is particularly suited for this task, outperforming the other three discussed models.
Abstract:Deep learning applied to weather forecasting has started gaining popularity because of the progress achieved by data-driven models. The present paper compares four different deep learning architectures to perform weather prediction on daily data gathered from 18 cities across Europe and spanned over a period of 15 years. The four proposed models investigate the different type of input representations (i.e. tensorial unistream vs. multi-stream matrices) as well as the combination of convolutional neural networks and LSTM (i.e. cascaded vs. ConvLSTM). In particular, we show that a model that uses a multi-stream input representation and that processes each lag individually combined with a cascaded convolution and LSTM is capable of better forecasting than the other compared models. In addition, we show that visualization techniques such as occlusion analysis and score maximization can give an additional insight on the most important features and cities for predicting a particular target feature and city.
Abstract:Neuroimaging techniques have shown to be useful when studying the brain's activity. This paper uses Magnetoencephalography (MEG) data, provided by the Human Connectome Project (HCP), in combination with various deep artificial neural network models to perform brain decoding. More specifically, here we investigate to which extent can we infer the task performed by a subject based on its MEG data. Three models based on compact convolution, combined convolutional and long short-term architecture as well as a model based on multi-view learning that aims at fusing the outputs of the two stream networks are proposed and examined. These models exploit the spatio-temporal MEG data for learning new representations that are used to decode the relevant tasks across subjects. In order to realize the most relevant features of the input signals, two attention mechanisms, i.e. self and global attention, are incorporated in all the models. The experimental results of cross subject multi-class classification on the studied MEG dataset show that the inclusion of attention improves the generalization of the models across subjects.