LIMOS, LITIS
Abstract:Adversarial examples are a challenging open problem for deep neural networks. We propose in this paper to add a penalization term that forces the decision function to be at in some regions of the input space, such that it becomes, at least locally, less sensitive to attacks. Our proposition is theoretically motivated and shows on a first set of carefully conducted experiments that it behaves as expected when used alone, and seems promising when coupled with adversarial training.
Abstract:This paper presents the recently published Cerema AWP (Adverse Weather Pedestrian) dataset for various machine learning tasks and its exports in machine learning friendly format. We explain why this dataset can be interesting (mainly because it is a greatly controlled and fully annotated image dataset) and present baseline results for various tasks. Moreover, we decided to follow the very recent suggestions of datasheets for dataset, trying to standardize all the available information of the dataset, with a transparency objective.