Abstract:From autonomous driving to package delivery, ensuring safe yet efficient multi-agent interaction is challenging as the interaction dynamics are influenced by hard-to-model factors such as social norms and contextual cues. Understanding these influences can aid in the design and evaluation of socially-aware autonomous agents whose behaviors are aligned with human values. In this work, we seek to codify factors governing safe multi-agent interactions via the lens of responsibility, i.e., an agent's willingness to deviate from their desired control to accommodate safe interaction with others. Specifically, we propose a data-driven modeling approach based on control barrier functions and differentiable optimization that efficiently learns agents' responsibility allocation from data. We demonstrate on synthetic and real-world datasets that we can obtain an interpretable and quantitative understanding of how much agents adjust their behavior to ensure the safety of others given their current environment.
Abstract:Detecting humans from airborne visual and thermal imagery is a fundamental challenge for Wilderness Search-and-Rescue (WiSAR) teams, who must perform this function accurately in the face of immense pressure. The ability to fuse these two sensor modalities can potentially reduce the cognitive load on human operators and/or improve the effectiveness of computer vision object detection models. However, the fusion task is particularly challenging in the context of WiSAR due to hardware limitations and extreme environmental factors. This work presents Misaligned Image Synthesis and Fusion using Information from Thermal and Visual (MISFIT-V), a novel two-pronged unsupervised deep learning approach that utilizes a Generative Adversarial Network (GAN) and a cross-attention mechanism to capture the most relevant features from each modality. Experimental results show MISFIT-V offers enhanced robustness against misalignment and poor lighting/thermal environmental conditions compared to existing visual-thermal image fusion methods.