Abstract:Localization of networked nodes is an essential problem in emerging applications, including first-responder navigation, automated manufacturing lines, vehicular and drone navigation, asset navigation and tracking, Internet of Things and 5G communication networks. In this paper, we present Locate3D, a novel system for peer-to-peer node localization and orientation estimation in large networks. Unlike traditional range-only methods, Locate3D introduces angle-of-arrival (AoA) data as an added network topology constraint. The system solves three key challenges: it uses angles to reduce the number of measurements required by 4x and jointly use range and angle data for location estimation. We develop a spanning-tree approach for fast location updates, and to ensure the output graphs are rigid and uniquely realizable, even in occluded or weakly connected areas. Locate3D cuts down latency by up to 75% without compromising accuracy, surpassing standard range-only solutions. It has a 10.2 meters median localization error for large-scale networks (30,000 nodes, 15 anchors spread across 14km square) and 0.5 meters for small-scale networks (10 nodes).
Abstract:This paper presents the design and implementation of WhisperWand, a comprehensive voice and motion tracking interface for voice assistants. Distinct from prior works, WhisperWand is a precise tracking interface that can co-exist with the voice interface on low sampling rate voice assistants. Taking handwriting as a specific application, it can also capture natural strokes and the individualized style of writing while occupying only a single frequency. The core technique includes an accurate acoustic ranging method called Cross Frequency Continuous Wave (CFCW) sonar, enabling voice assistants to use ultrasound as a ranging signal while using the regular microphone system of voice assistants as a receiver. We also design a new optimization algorithm that only requires a single frequency for time difference of arrival. WhisperWand prototype achieves 73 um of median error for 1D ranging and 1.4 mm of median error in 3D tracking of an acoustic beacon using the microphone array used in voice assistants. Our implementation of an in-air handwriting interface achieves 94.1% accuracy with automatic handwriting-to-text software, similar to writing on paper (96.6%). At the same time, the error rate of voice-based user authentication only increases from 6.26% to 8.28%.