Abstract:Capturing subtle speech disruptions across the psychosis spectrum is challenging because of the inherent variability in speech patterns. This variability reflects individual differences and the fluctuating nature of symptoms in both clinical and non-clinical populations. Accounting for uncertainty in speech data is essential for predicting symptom severity and improving diagnostic precision. Speech disruptions characteristic of psychosis appear across the spectrum, including in non-clinical individuals. We develop an uncertainty-aware model integrating acoustic and linguistic features to predict symptom severity and psychosis-related traits. Quantifying uncertainty in specific modalities allows the model to address speech variability, improving prediction accuracy. We analyzed speech data from 114 participants, including 32 individuals with early psychosis and 82 with low or high schizotypy, collected through structured interviews, semi-structured autobiographical tasks, and narrative-driven interactions in German. The model improved prediction accuracy, reducing RMSE and achieving an F1-score of 83% with ECE = 4.5e-2, showing robust performance across different interaction contexts. Uncertainty estimation improved model interpretability by identifying reliability differences in speech markers such as pitch variability, fluency disruptions, and spectral instability. The model dynamically adjusted to task structures, weighting acoustic features more in structured settings and linguistic features in unstructured contexts. This approach strengthens early detection, personalized assessment, and clinical decision-making in psychosis-spectrum research.
Abstract:Natural language processing (NLP) is becoming an important means for automatic recognition of human traits and states, such as intoxication, presence of psychiatric disorders, presence of airway disorders and states of stress. Such applications have the potential to be an important pillar for online help lines, and may gradually be introduced into eHealth modules. However, NLP is language specific and for languages such as Dutch, NLP models are scarce. As a result, recent Dutch NLP models have a low capture of long range semantic dependencies over sentences. To overcome this, here we present belabBERT, a new Dutch language model extending the RoBERTa architecture. belabBERT is trained on a large Dutch corpus (+32 GB) of web crawled texts. We applied belabBERT to the classification of psychiatric illnesses. First, we evaluated the strength of text-based classification using belabBERT, and compared the results to the existing RobBERT model. Then, we compared the performance of belabBERT to audio classification for psychiatric disorders. Finally, a brief exploration was performed, extending the framework to a hybrid text- and audio-based classification. Our results show that belabBERT outperformed the current best text classification network for Dutch, RobBERT. belabBERT also outperformed classification based on audio alone.