Mullet
Abstract:Satellite imagery has played an increasingly important role in post-disaster building damage assessment. Unfortunately, current methods still rely on manual visual interpretation, which is often time-consuming and can cause very low accuracy. To address the limitations of manual interpretation, there has been a significant increase in efforts to automate the process. We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models. We show our results submitted as part of the xView2 Challenge, a competition to design better models for identifying buildings and their damage level after exposure to multiple kinds of natural disasters. Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66, surpassing the xView2 challenge baseline F1 score of 0.28. We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task due to the visual similarity between different damage levels and different damage distribution between disaster types, highlighting the fact that it may be important to have a probabilistic prior estimate regarding disaster damage in order to obtain accurate predictions.
Abstract:The need for the maintenance of railway track systems have been increasing. Traditional methods that are currently being used are either inaccurate, labor and time intensive, or does not enable continuous monitoring of the system. As a result, in-service train vibrations have been shown to be a cheaper alternative for monitoring of railway track systems. In this paper, a method is proposed to detect different maintenance needs of railway track systems using a single pass of train direction. The DR-Train dataset that is publicly available was used. Results show that by using a simple classifier such as the k-nearest neighbor (k-NN) algorithm, the signal energy features of the acceleration data can achieve 76\% accuracy on two types of maintenance needs, tamping and surfacing. The results show that the transverse direction is able to more accurately detect maintenance needs, and triaxial accelerometer can give further information on the maintenance needs. Furthermore, this paper demonstrates the use of multi-label classification to detect multiple types of maintenance needs simultaneously. The results show multi-label classification performs only slightly worse than the simple binary classification (72\% accuracy) and that this can be a simple method that can easily be deployed in areas that have a history of many maintenance issues.