Abstract:Support agents that help users in their daily lives need to take into account not only the user's characteristics, but also the social situation of the user. Existing work on including social context uses some type of situation cue as an input to information processing techniques in order to assess the expected behavior of the user. However, research shows that it is important to also determine the meaning of a situation, a step which we refer to as social situation comprehension. We propose using psychological characteristics of situations, which have been proposed in social science for ascribing meaning to situations, as the basis for social situation comprehension. Using data from user studies, we evaluate this proposal from two perspectives. First, from a technical perspective, we show that psychological characteristics of situations can be used as input to predict the priority of social situations, and that psychological characteristics of situations can be predicted from the features of a social situation. Second, we investigate the role of the comprehension step in human-machine meaning making. We show that psychological characteristics can be successfully used as a basis for explanations given to users about the decisions of an agenda management personal assistant agent.
Abstract:Artificial agents that support people in their daily activities (e.g., virtual coaches and personal assistants) are increasingly prevalent. Since many daily activities are social in nature, support agents should understand a user's social situation to offer comprehensive support. However, there are no systematic approaches for developing support agents that are social situation aware. We identify key requirements for a support agent to be social situation aware and propose steps to realize those requirements. These steps are presented through a conceptual architecture that centers around two key ideas: (1) conceptualizing social situation awareness as an instantiation of `general' situation awareness, and (2) using situation taxonomies as the key element of such instantiation. This enables support agents to represent a user's social situation, comprehend its meaning, and assess its impact on the user's behavior. We discuss empirical results supporting that the proposed approach can be effective and illustrate how the architecture can be used in support agents through a use case.