Abstract:The recent success of Large Language Models (LLMs) has sparked concerns about their potential to spread misinformation. As a result, there is a pressing need for tools to identify ``fake arguments'' generated by such models. To create these tools, examples of texts generated by LLMs are needed. This paper introduces a methodology to obtain good, bad and ugly arguments from argumentative essays produced by ChatGPT, OpenAI's LLM. We then describe a novel dataset containing a set of diverse arguments, ArGPT. We assess the effectiveness of our dataset and establish baselines for several argumentation-related tasks. Finally, we show that the artificially generated data relates well to human argumentation and thus is useful as a tool to train and test systems for the defined tasks.
Abstract:We present dPASP, a novel declarative probabilistic logic programming framework for differentiable neuro-symbolic reasoning. The framework allows for the specification of discrete probabilistic models with neural predicates, logic constraints and interval-valued probabilistic choices, thus supporting models that combine low-level perception (images, texts, etc), common-sense reasoning, and (vague) statistical knowledge. To support all such features, we discuss the several semantics for probabilistic logic programs that can express nondeterministic, contradictory, incomplete and/or statistical knowledge. We also discuss how gradient-based learning can be performed with neural predicates and probabilistic choices under selected semantics. We then describe an implemented package that supports inference and learning in the language, along with several example programs. The package requires minimal user knowledge of deep learning system's inner workings, while allowing end-to-end training of rather sophisticated models and loss functions.