Abstract:Tree ensembles, including boosting methods, are highly effective and widely used for tabular data. However, large ensembles lack interpretability and require longer inference times. We introduce a method to prune a tree ensemble into a reduced version that is "functionally identical" to the original model. In other words, our method guarantees that the prediction function stays unchanged for any possible input. As a consequence, this pruning algorithm is lossless for any aggregated metric. We formalize the problem of functionally identical pruning on ensembles, introduce an exact optimization model, and provide a fast yet highly effective method to prune large ensembles. Our algorithm iteratively prunes considering a finite set of points, which is incrementally augmented using an adversarial model. In multiple computational experiments, we show that our approach is a "free lunch", significantly reducing the ensemble size without altering the model's behavior. Thus, we can preserve state-of-the-art performance at a fraction of the original model's size.