Abstract:The development of finite/fixed-time stable optimization algorithms typically involves study of specific problem instances. The lack of a unified framework hinders understanding of more sophisticated algorithms, e.g., primal-dual gradient flow dynamics. The purpose of this paper is to address the following question: Given an exponentially stable optimization algorithm, can it be modified to obtain a finite/fixed-time stable algorithm? We provide an affirmative answer, demonstrate how the solution can be computed on a finite-time interval via a simple scaling of the right-hand-side of the original dynamics, and certify the desired properties of the modified algorithm using the Lyapunov function that proves exponential stability of the original system. Finally, we examine nonsmooth composite optimization problems and smooth problems with linear constraints to demonstrate the merits of our approach.
Abstract:We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we provide a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of various primal-dual dynamics as well as (linear) convergence of discrete-time methods, e.g., standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed dynamics for parallel and distributed computing applications.
Abstract:We examine convergence properties of continuous-time variants of accelerated Forward-Backward (FB) and Douglas-Rachford (DR) splitting algorithms for nonsmooth composite optimization problems. When the objective function is given by the sum of a quadratic and a nonsmooth term, we establish accelerated sublinear and exponential convergence rates for convex and strongly convex problems, respectively. Moreover, for FB splitting dynamics, we demonstrate that accelerated exponential convergence rate carries over to general strongly convex problems. In our Lyapunov-based analysis we exploit the variable-metric gradient interpretations of FB and DR splittings to obtain smooth Lyapunov functions that allow us to establish accelerated convergence rates. We provide computational experiments to demonstrate the merits and the effectiveness of our analysis.