Abstract:This study explores the efficacy of a Transformer model for 120-hour streamflow prediction across 125 diverse locations in Iowa, US. Utilizing data from the preceding 72 hours, including precipitation, evapotranspiration, and discharge values, we developed a generalized model to predict future streamflow. Our approach contrasts with traditional methods that typically rely on location-specific models. We benchmarked the Transformer model's performance against three deep learning models (LSTM, GRU, and Seq2Seq) and the Persistence approach, employing Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), Pearson's r, and Normalized Root Mean Square Error (NRMSE) as metrics. The study reveals the Transformer model's superior performance, maintaining higher median NSE and KGE scores and exhibiting the lowest NRMSE values. This indicates its capability to accurately simulate and predict streamflow, adapting effectively to varying hydrological conditions and geographical variances. Our findings underscore the Transformer model's potential as an advanced tool in hydrological modeling, offering significant improvements over traditional and contemporary approaches.
Abstract:Hackathons and software competitions, increasingly pivotal in the software industry, serve as vital catalysts for innovation and skill development for both organizations and students. These platforms enable companies to prototype ideas swiftly, while students gain enriched learning experiences, enhancing their practical skills. Over the years, hackathons have transitioned from mere competitive events to significant educational tools, fusing theoretical knowledge with real-world problem-solving. The integration of hackathons into computer science and software engineering curricula aims to align educational proficiencies within a collaborative context, promoting peer connectivity and enriched learning via industry-academia collaborations. However, the infusion of advanced technologies, notably artificial intelligence (AI), and machine learning, into hackathons is revolutionizing their structure and outcomes. This evolution brings forth both opportunities, like enhanced learning experiences, and challenges, such as ethical concerns. This study delves into the impact of generative AI, examining its influence on student's technological choices based on a case study on the University of Iowa 2023 event. The exploration provides insights into AI's role in hackathons, and its educational implications, and offers a roadmap for the integration of such technologies in future events, ensuring innovation is balanced with ethical and educational considerations.
Abstract:This research study delves into the conceptualization, development, and deployment of an innovative learning analytics tool, leveraging the capabilities of OpenAI's GPT-4 model. This tool is designed to quantify student engagement, map learning progression, and evaluate the efficacy of diverse instructional strategies within an educational context. Through the analysis of various critical data points such as students' stress levels, curiosity, confusion, agitation, topic preferences, and study methods, the tool offers a rich, multi-dimensional view of the learning environment. Furthermore, it employs Bloom's taxonomy as a framework to gauge the cognitive levels addressed by students' questions, thereby elucidating their learning progression. The information gathered from these measurements can empower educators by providing valuable insights to enhance teaching methodologies, pinpoint potential areas for improvement, and craft personalized interventions for individual students. The study articulates the design intricacies, implementation strategy, and thorough evaluation of the learning analytics tool, underscoring its prospective contributions to enhancing educational outcomes and bolstering student success. Moreover, the practicalities of integrating the tool within existing educational platforms and the requisite robust, secure, and scalable technical infrastructure are addressed. This research opens avenues for harnessing AI's potential in shaping the future of education, facilitating data-driven pedagogical decisions, and ultimately fostering a more conducive, personalized learning environment.
Abstract:This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA), for personalized and adaptive learning in higher education. The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform. This platform is engineered to reduce cognitive load on learners by providing easy access to information, facilitating knowledge assessment, and delivering personalized learning support tailored to individual needs and learning styles. The AIIA's capabilities include understanding and responding to student inquiries, generating quizzes and flashcards, and offering personalized learning pathways. The research findings have the potential to significantly impact the design, implementation, and evaluation of AI-enabled Virtual Teaching Assistants (VTAs) in higher education, informing the development of innovative educational tools that can enhance student learning outcomes, engagement, and satisfaction. The paper presents the methodology, system architecture, intelligent services, and integration with Learning Management Systems (LMSs) while discussing the challenges, limitations, and future directions for the development of AI-enabled intelligent assistants in education.
Abstract:In recent years, advancements in artificial intelligence (AI) have led to the development of large language models like GPT-4, demonstrating potential applications in various fields, including education. This study investigates the feasibility and effectiveness of using ChatGPT, a GPT-4 based model, in achieving satisfactory performance on the Fundamentals of Engineering (FE) Environmental Exam. This study further shows a significant improvement in the model's accuracy when answering FE exam questions through noninvasive prompt modifications, substantiating the utility of prompt modification as a viable approach to enhance AI performance in educational contexts. Furthermore, the findings reflect remarkable improvements in mathematical capabilities across successive iterations of ChatGPT models, showcasing their potential in solving complex engineering problems. Our paper also explores future research directions, emphasizing the importance of addressing AI challenges in education, enhancing accessibility and inclusion for diverse student populations, and developing AI-resistant exam questions to maintain examination integrity. By evaluating the performance of ChatGPT in the context of the FE Environmental Exam, this study contributes valuable insights into the potential applications and limitations of large language models in educational settings. As AI continues to evolve, these findings offer a foundation for further research into the responsible and effective integration of AI models across various disciplines, ultimately optimizing the learning experience and improving student outcomes.
Abstract:Rainfall data collected by various remote sensing instruments such as radars or satellites has different space-time resolutions. This study aims to improve the temporal resolution of radar rainfall products to help with more accurate climate change modeling and studies. In this direction, we introduce a solution based on EfficientNetV2, namely EfficientTempNet, to increase the temporal resolution of radar-based rainfall products from 10 minutes to 5 minutes. We tested EfficientRainNet over a dataset for the state of Iowa, US, and compared its performance to three different baselines to show that EfficientTempNet presents a viable option for better climate change monitoring.
Abstract:Miscommunication and communication challenges between instructors and students represents one of the primary barriers to post-secondary learning. Students often avoid or miss opportunities to ask questions during office hours due to insecurities or scheduling conflicts. Moreover, students need to work at their own pace to have the freedom and time for the self-contemplation needed to build conceptual understanding and develop creative thinking skills. To eliminate barriers to student engagement, academic institutions need to redefine their fundamental approach to education by proposing flexible educational pathways that recognize continuous learning. To this end, we developed an AI-augmented intelligent educational assistance framework based on a power language model (i.e., GPT-3) that automatically generates course-specific intelligent assistants regardless of discipline or academic level. The virtual intelligent teaching assistant (TA) system will serve as a voice-enabled helper capable of answering course-specific questions concerning curriculum, logistics and course policies. It is envisioned to improve access to course-related information for the students and reduce logistical workload for the instructors and TAs. Its GPT-3-based knowledge discovery component as well as the generalized system architecture is presented accompanied by a methodical evaluation of the system accuracy and performance.
Abstract:Time-series modeling has shown great promise in recent studies using the latest deep learning algorithms such as LSTM (Long Short-Term Memory). These studies primarily focused on watershed-scale rainfall-runoff modeling or streamflow forecasting, but the majority of them only considered a single watershed as a unit. Although this simplification is very effective, it does not take into account spatial information, which could result in significant errors in large watersheds. Several studies investigated the use of GNN (Graph Neural Networks) for data integration by decomposing a large watershed into multiple sub-watersheds, but each sub-watershed is still treated as a whole, and the geoinformation contained within the watershed is not fully utilized. In this paper, we propose the GNRRM (Graph Neural Rainfall-Runoff Model), a novel deep learning model that makes full use of spatial information from high-resolution precipitation data, including flow direction and geographic information. When compared to baseline models, GNRRM has less over-fitting and significantly improves model performance. Our findings support the importance of hydrological data in deep learning-based rainfall-runoff modeling, and we encourage researchers to include more domain knowledge in their models.
Abstract:Efficient climate change monitoring and modeling rely on high-quality geospatial and environmental datasets. Due to limitations in technical capabilities or resources, the acquisition of high-quality data for many environmental disciplines is costly. Digital Elevation Model (DEM) datasets are such examples whereas their low-resolution versions are widely available, high-resolution ones are scarce. In an effort to rectify this problem, we propose and assess an EfficientNetV2 based model. The proposed model increases the spatial resolution of DEMs up to 16times without additional information.
Abstract:The temporal and spatial resolution of rainfall data is crucial for climate change modeling studies in which its variability in space and time is considered as a primary factor. Rainfall products from different remote sensing instruments (e.g., radar or satellite) provide different space-time resolutions because of the differences in their sensing capabilities. We developed an approach that augments rainfall data with increased time resolutions to complement relatively lower resolution products. This study proposes a neural network architecture based on Convolutional Neural Networks (CNNs) to improve temporal resolution of radar-based rainfall products and compares the proposed model with an optical flow-based interpolation method.