Abstract:This study investigates the application of Super-Resolution techniques in holographic microscopy to enhance quantitative phase imaging. An off-axis Mach-Zehnder interferometric setup was employed to capture interferograms. The study evaluates two Super-Resolution models, RCAN and Real-ESRGAN, for their effectiveness in reconstructing high-resolution interferograms from a microparticle-based dataset. The models were assessed using two primary approaches: image-based analysis for structural detail enhancement and morphological evaluation for maintaining sample integrity and phase map accuracy. The results demonstrate that RCAN achieves superior numerical precision, making it ideal for applications requiring highly accurate phase map reconstruction, while Real-ESRGAN enhances visual quality and structural coherence, making it suitable for visualization-focused applications. This study highlights the potential of Super-Resolution models in overcoming diffraction-imposed resolution limitations in holographic microscopy, opening the way for improved imaging techniques in biomedical diagnostics, materials science, and other high-precision fields.
Abstract:Lumbar disk segmentation is essential for diagnosing and curing spinal disorders by enabling precise detection of disk boundaries in medical imaging. The advent of deep learning has resulted in the development of many segmentation methods, offering differing levels of accuracy and effectiveness. This study assesses the effectiveness of several sophisticated deep learning architectures, including ResUnext, Ef3 Net, UNet, and TransUNet, for lumbar disk segmentation, highlighting key metrics like as Pixel Accuracy, Mean Intersection over Union (Mean IoU), and Dice Coefficient. The findings indicate that ResUnext achieved the highest segmentation accuracy, with a Pixel Accuracy of 0.9492 and a Dice Coefficient of 0.8425, with TransUNet following closely after. Filtering techniques somewhat enhanced the performance of most models, particularly Dense UNet, improving stability and segmentation quality. The findings underscore the efficacy of these models in lumbar disk segmentation and highlight potential areas for improvement.