Abstract:Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the study and thus require the analyst to specify a fixed sample size in advance. However, in many online learning applications, it is advantageous to continuously produce inference on the average treatment effect (ATE) between arms as new data arrive and determine a data-driven stopping time for the experiment. Existing work on continuous inference for adaptive experiments assumes that the treatment assignment probabilities are bounded away from zero and one, thus excluding nearly all standard bandit algorithms. In this work, we develop the Mixture Adaptive Design (MAD), a new experimental design for multi-armed bandits that enables continuous inference on the ATE with guarantees on statistical validity and power for nearly any bandit algorithm. On a high level, the MAD "mixes" a bandit algorithm of the user's choice with a Bernoulli design through a tuning parameter $\delta_t$, where $\delta_t$ is a deterministic sequence that controls the priority placed on the Bernoulli design as the sample size grows. We show that for $\delta_t = o\left(1/t^{1/4}\right)$, the MAD produces a confidence sequence that is asymptotically valid and guaranteed to shrink around the true ATE. We empirically show that the MAD improves the coverage and power of ATE inference in MAB experiments without significant losses in finite-sample reward.
Abstract:Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a principled way requires selecting the proportion of units assigned to the new release in a way that balances the risk of an adverse effect with the need to iterate and learn from the experiment rapidly. In this paper, we formalize this problem and propose an algorithm that automatically determines the release percentage at each stage in the schedule, balancing the need to control risk while maximizing ramp-up speed. Our framework models the challenge as a constrained batched bandit problem that ensures that our pre-specified experimental budget is not depleted with high probability. Our proposed algorithm leverages an adaptive Bayesian approach in which the maximal number of units assigned to the treatment is determined by the posterior distribution, ensuring that the probability of depleting the remaining budget is low. Notably, our approach analytically solves the ramp sizes by inverting probability bounds, eliminating the need for challenging rare-event Monte Carlo simulation. It only requires computing means and variances of outcome subsets, making it highly efficient and parallelizable.