Abstract:Player experience (PX) evaluation has become a field of interest in the game industry. Several manual PX techniques have been introduced to assist developers to understand and evaluate the experience of players in computer games. However, automated testing of player experience still needs to be addressed. An automated player experience testing framework would allow designers to evaluate the PX requirements in the early development stages without the necessity of participating human players. In this paper, we propose an automated player experience testing approach by suggesting a formal model of event-based emotions. In particular, we discuss an event-based transition system to formalize relevant emotions using Ortony, Clore, & Collins (OCC) theory of emotions. A working prototype of the model is integrated on top of Aplib, a tactical agent programming library, to create intelligent PX test agents, capable of appraising emotions in a 3D game case study. The results are graphically shown e.g. as heat maps. Emotion visualization of the test agent would ultimately help game designers in creating content that evokes a certain experience in players.
Abstract:This paper presents aplib, a Java library for programming intelligent agents, featuring BDI and multi agency, but adding on top of it a novel layer of tactical programming inspired by the domain of theorem proving. Aplib is also implemented in such a way to provide the fluency of a Domain Specific Language (DSL). Compared to dedicated BDI agent programming languages such as JASON, 2APL, or GOAL,aplib's embedded DSL approach does mean that \aplib\ programmers will still be limited by Java syntax, but on other hand they get all the advantages that Java programmers get: rich language features (object orientation, static type checking, $\lambda$-expression, libraries, etc), a whole array of development tools, integration with other technologies, large community, etc.