Abstract:Intelligent virtual assistants are currently designed to perform tasks or services explicitly mentioned by users, so multiple related domains or tasks need to be performed one by one through a long conversation with many explicit intents. Instead, human assistants are capable of reasoning (multiple) implicit intents based on user utterances via commonsense knowledge, reducing complex interactions and improving practicality. Therefore, this paper proposes a framework of multi-domain dialogue systems, which can automatically infer implicit intents based on user utterances and then perform zero-shot prompting using a large pre-trained language model to trigger suitable single task-oriented bots. The proposed framework is demonstrated effective to realize implicit intents and recommend associated bots in a zero-shot manner.
Abstract:This paper introduces Miutsu, National Taiwan University's Alexa Prize TaskBot, which is designed to assist users in completing tasks requiring multiple steps and decisions in two different domains -- home improvement and cooking. We overview our system design and architectural goals, and detail the proposed core elements, including question answering, task retrieval, social chatting, and various conversational modules. A dialogue flow is proposed to provide a robust and engaging conversation when handling complex tasks. We discuss the faced challenges during the competition and potential future work.