Abstract:This work was developed aiming to employ Statistical techniques to the field of Music Emotion Recognition, a well-recognized area within the Signal Processing world, but hardly explored from the statistical point of view. Here, we opened several possibilities within the field, applying modern Bayesian Statistics techniques and developing efficient algorithms, focusing on the applicability of the results obtained. Although the motivation for this project was the development of a emotion-based music recommendation system, its main contribution is a highly adaptable multivariate model that can be useful interpreting any database where there is an interest in applying regularization in an efficient manner. Broadly speaking, we will explore what role a sound theoretical statistical analysis can play in the modeling of an algorithm that is able to understand a well-known database and what can be gained with this kind of approach.
Abstract:A common defect found when reproducing old vinyl and gramophone recordings with mechanical devices are the long pulses with significant low-frequency content caused by the interaction of the arm-needle system with deep scratches or even breakages on the media surface. Previous approaches to their suppression on digital counterparts of the recordings depend on a prior estimation of the pulse location, usually performed via heuristic methods. This paper proposes a novel Bayesian approach capable of jointly estimating the pulse location; interpolating the almost annihilated signal underlying the strong discontinuity that initiates the pulse; and also estimating the long pulse tail by a simple Gaussian Process, allowing its suppression from the corrupted signal. The posterior distribution for the model parameters as well for the pulse is explored via Markov-Chain Monte Carlo (MCMC) algorithms. Controlled experiments indicate that the proposed method, while requiring significantly less user intervention, achieves perceptual results similar to those of previous approaches and performs well when dealing with naturally degraded signals.