Abstract:Early recognition of clinical deterioration (CD) has vital importance in patients' survival from exacerbation or death. Electronic health records (EHRs) data have been widely employed in Early Warning Scores (EWS) to measure CD risk in hospitalized patients. Recently, EHRs data have been utilized in Machine Learning (ML) models to predict mortality and CD. The ML models have shown superior performance in CD prediction compared to EWS. Since EHRs data are structured and tabular, conventional ML models are generally applied to them, and less effort is put into evaluating the artificial neural network's performance on EHRs data. Thus, in this article, an extremely boosted neural network (XBNet) is used to predict CD, and its performance is compared to eXtreme Gradient Boosting (XGBoost) and random forest (RF) models. For this purpose, 103,105 samples from thirteen Brazilian hospitals are used to generate the models. Moreover, the principal component analysis (PCA) is employed to verify whether it can improve the adopted models' performance. The performance of ML models and Modified Early Warning Score (MEWS), an EWS candidate, are evaluated in CD prediction regarding the accuracy, precision, recall, F1-score, and geometric mean (G-mean) metrics in a 10-fold cross-validation approach. According to the experiments, the XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
Abstract:Early recognition of clinical deterioration is one of the main steps for reducing inpatient morbidity and mortality. The challenging task of clinical deterioration identification in hospitals lies in the intense daily routines of healthcare practitioners, in the unconnected patient data stored in the Electronic Health Records (EHRs) and in the usage of low accuracy scores. Since hospital wards are given less attention compared to the Intensive Care Unit, ICU, we hypothesized that when a platform is connected to a stream of EHR, there would be a drastic improvement in dangerous situations awareness and could thus assist the healthcare team. With the application of machine learning, the system is capable to consider all patient's history and through the use of high-performing predictive models, an intelligent early warning system is enabled. In this work we used 121,089 medical encounters from six different hospitals and 7,540,389 data points, and we compared popular ward protocols with six different scalable machine learning methods (three are classic machine learning models, logistic and probabilistic-based models, and three gradient boosted models). The results showed an advantage in AUC (Area Under the Receiver Operating Characteristic Curve) of 25 percentage points in the best Machine Learning model result compared to the current state-of-the-art protocols. This is shown by the generalization of the algorithm with leave-one-group-out (AUC of 0.949) and the robustness through cross-validation (AUC of 0.961). We also perform experiments to compare several window sizes to justify the use of five patient timestamps. A sample dataset, experiments, and code are available for replicability purposes.