Abstract:Ablation studies are essential for understanding the contribution of individual components within complex models, yet their application in nonparametric treatment effect estimation remains limited. This paper emphasizes the importance of ablation studies by examining the Bayesian Causal Forest (BCF) model, particularly the inclusion of the estimated propensity score $\hat{\pi}(x_i)$ intended to mitigate regularization-induced confounding (RIC). Through a partial ablation study utilizing five synthetic data-generating processes with varying baseline and propensity score complexities, we demonstrate that excluding $\hat{\pi}(x_i)$ does not diminish the model's performance in estimating average and conditional average treatment effects or in uncertainty quantification. Moreover, omitting $\hat{\pi}(x_i)$ reduces computational time by approximately 21\%. These findings suggest that the BCF model's inherent flexibility suffices in adjusting for confounding without explicitly incorporating the propensity score. The study advocates for the routine use of ablation studies in treatment effect estimation to ensure model components are essential and to prevent unnecessary complexity.
Abstract:This paper introduces a generalized ps-BART model for the estimation of Average Treatment Effect (ATE) and Conditional Average Treatment Effect (CATE) in continuous treatments, addressing limitations of the Bayesian Causal Forest (BCF) model. The ps-BART model's nonparametric nature allows for flexibility in capturing nonlinear relationships between treatment and outcome variables. Across three distinct sets of Data Generating Processes (DGPs), the ps-BART model consistently outperforms the BCF model, particularly in highly nonlinear settings. The ps-BART model's robustness in uncertainty estimation and accuracy in both point-wise and probabilistic estimation demonstrate its utility for real-world applications. This research fills a crucial gap in causal inference literature, providing a tool better suited for nonlinear treatment-outcome relationships and opening avenues for further exploration in the domain of continuous treatment effect estimation.
Abstract:This research aims to propose and evaluate a novel model named K-Fold Causal Bayesian Additive Regression Trees (K-Fold Causal BART) for improved estimation of Average Treatment Effects (ATE) and Conditional Average Treatment Effects (CATE). The study employs synthetic and semi-synthetic datasets, including the widely recognized Infant Health and Development Program (IHDP) benchmark dataset, to validate the model's performance. Despite promising results in synthetic scenarios, the IHDP dataset reveals that the proposed model is not state-of-the-art for ATE and CATE estimation. Nonetheless, the research provides several novel insights: 1. The ps-BART model is likely the preferred choice for CATE and ATE estimation due to better generalization compared to the other benchmark models - including the Bayesian Causal Forest (BCF) model, which is considered by many the current best model for CATE estimation, 2. The BCF model's performance deteriorates significantly with increasing treatment effect heterogeneity, while the ps-BART model remains robust, 3. Models tend to be overconfident in CATE uncertainty quantification when treatment effect heterogeneity is low, 4. A second K-Fold method is unnecessary for avoiding overfitting in CATE estimation, as it adds computational costs without improving performance, 5. Detailed analysis reveals the importance of understanding dataset characteristics and using nuanced evaluation methods, 6. The conclusion of Curth et al. (2021) that indirect strategies for CATE estimation are superior for the IHDP dataset is contradicted by the results of this research. These findings challenge existing assumptions and suggest directions for future research to enhance causal inference methodologies.