Zhengzhou University of Light Industry, Zhengzhou, China
Abstract:As a new candidate waveform for the next generation wireless communications, orthogonal chirp division multiplexing (OCDM) has attracted growing attention for its ability to achieve full diversity in uncoded transmission, and its robustness to narrow-band interference or impulsive noise. Under high mobility channels with multiple lags and multiple Doppler-shifts (MLMD), the signal suffers doubly selective (DS) fadings in time and frequency domain, and data symbols modulated on orthogonal chirps are interfered by each other. To address the problem of symbol detection of OCDM over MLMD channel, under the assumption that path attenuation factors, delays, and Doppler shifts of the channel are available, we first derive the closed-form channel matrix in Fresnel domain, and then propose a low-complexity method to approximate it as a sparse matrix. Based on the approximated Fresnel-domain channel, we propose a message passing (MP) based detector to estimate the transmit symbols iteratively. Finally, under two MLMD channels (an underspread channel for terrestrial vehicular communication, and an overspread channel for narrow-band underwater acoustic communications), Monte Carlo simulation results and analysis are provided to validate its advantages as a promising detector for OCDM.