Abstract:Text spotting for industrial panels is a key task for intelligent monitoring. However, achieving efficient and accurate text spotting for complex industrial panels remains challenging due to issues such as cross-scale localization and ambiguous boundaries in dense text regions. Moreover, most existing methods primarily focus on representing a single text shape, neglecting a comprehensive exploration of multi-scale feature information across different texts. To address these issues, this work proposes a novel multi-scale dense text spotter for edge AI-based vision system (EdgeSpotter) to achieve accurate and robust industrial panel monitoring. Specifically, a novel Transformer with efficient mixer is developed to learn the interdependencies among multi-level features, integrating multi-layer spatial and semantic cues. In addition, a new feature sampling with catmull-rom splines is designed, which explicitly encodes the shape, position, and semantic information of text, thereby alleviating missed detections and reducing recognition errors caused by multi-scale or dense text regions. Furthermore, a new benchmark dataset for industrial panel monitoring (IPM) is constructed. Extensive qualitative and quantitative evaluations on this challenging benchmark dataset validate the superior performance of the proposed method in different challenging panel monitoring tasks. Finally, practical tests based on the self-designed edge AI-based vision system demonstrate the practicality of the method. The code and demo will be available at https://github.com/vision4robotics/EdgeSpotter.
Abstract:Graph Convolutional Networks (GCN) with multi-hop aggregation is more expressive than one-hop GCN but suffers from higher model complexity. Finding the shortest aggregation range that achieves comparable expressiveness and minimizes this side effect remains an open question. We answer this question by showing that multi-layer second-order graph convolution (SoGC) is sufficient to attain the ability of expressing polynomial spectral filters with arbitrary coefficients. Compared to models with one-hop aggregation, multi-hop propagation, and jump connections, SoGC possesses filter representational completeness while being lightweight, efficient, and easy to implement. Thereby, we suggest that SoGC is a simple design capable of forming the basic building block of GCNs, playing the same role as $3 \times 3$ kernels in CNNs. We build our Second-Order Graph Convolutional Networks (SoGCN) with SoGC and design a synthetic dataset to verify its filter fitting capability to validate these points. For real-world tasks, we present the state-of-the-art performance of SoGCN on the benchmark of node classification, graph classification, and graph regression datasets.