Abstract:Despite advances in Large Language Models (LLMs) and Multimodal LLMs (MLLMs) for visual document understanding (VDU), visual information extraction (VIE) from relation-rich documents remains challenging due to the layout diversity and limited training data. While existing synthetic document generators attempt to address data scarcity, they either rely on manually designed layouts and templates, or adopt rule-based approaches that limit layout diversity. Besides, current layout generation methods focus solely on topological patterns without considering textual content, making them impractical for generating documents with complex associations between the contents and layouts. In this paper, we propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach: (1) Content Generation, which leverages LLMs to generate document content using a carefully designed Hierarchical Structure Text format which captures entity categories and relationships, and (2) Content-driven Layout Generation, which learns to create diverse, plausible document layouts solely from easily available Optical Character Recognition (OCR) results, requiring no human labeling or annotations efforts. Experimental results have demonstrated that our method significantly enhances the performance of document understanding models on various VIE benchmarks. The code and model will be available at https://github.com/AI-Application-and-Integration-Lab/RIDGE .
Abstract:Although face anti-spoofing (FAS) methods have achieved remarkable performance on specific domains or attack types, few studies have focused on the simultaneous presence of domain changes and unknown attacks, which is closer to real application scenarios. To handle domain-generalized unknown attacks, we introduce a new method, DGUA-FAS, which consists of a Transformer-based feature extractor and a synthetic unknown attack sample generator (SUASG). The SUASG network simulates unknown attack samples to assist the training of the feature extractor. Experimental results show that our method achieves superior performance on domain generalization FAS with known or unknown attacks.