Abstract:Ensuring robustness against epistemic, possibly adversarial, perturbations is essential for reliable real-world decision-making. While the Probabilistic Ensembles with Trajectory Sampling (PETS) algorithm inherently handles uncertainty via ensemble-based probabilistic models, it lacks guarantees against structured adversarial or worst-case uncertainty distributions. To address this, we propose DR-PETS, a distributionally robust extension of PETS that certifies robustness against adversarial perturbations. We formalize uncertainty via a p-Wasserstein ambiguity set, enabling worst-case-aware planning through a min-max optimization framework. While PETS passively accounts for stochasticity, DR-PETS actively optimizes robustness via a tractable convex approximation integrated into PETS planning loop. Experiments on pendulum stabilization and cart-pole balancing show that DR-PETS certifies robustness against adversarial parameter perturbations, achieving consistent performance in worst-case scenarios where PETS deteriorates.
Abstract:Despite their groundbreaking performance, state-of-the-art autonomous agents can misbehave when training and environmental conditions become inconsistent, with minor mismatches leading to undesirable behaviors or even catastrophic failures. Robustness towards these training/environment ambiguities is a core requirement for intelligent agents and its fulfillment is a long-standing challenge when deploying agents in the real world. Here, departing from mainstream views seeking robustness through training, we introduce DR-FREE, a free energy model that installs this core property by design. It directly wires robustness into the agent decision-making mechanisms via free energy minimization. By combining a robust extension of the free energy principle with a novel resolution engine, DR-FREE returns a policy that is optimal-yet-robust against ambiguity. Moreover, for the first time, it reveals the mechanistic role of ambiguity on optimal decisions and requisite Bayesian belief updating. We evaluate DR-FREE on an experimental testbed involving real rovers navigating an ambiguous environment filled with obstacles. Across all the experiments, DR-FREE enables robots to successfully navigate towards their goal even when, in contrast, standard free energy minimizing agents that do not use DR-FREE fail. In short, DR-FREE can tackle scenarios that elude previous methods: this milestone may inspire both deployment in multi-agent settings and, at a perhaps deeper level, the quest for a biologically plausible explanation of how natural agents - with little or no training - survive in capricious environments.
Abstract:This paper is concerned with a finite-horizon inverse control problem, which has the goal of inferring, from observations, the possibly non-convex and non-stationary cost driving the actions of an agent. In this context, we present a result that enables cost estimation by solving an optimization problem that is convex even when the agent cost is not and when the underlying dynamics is nonlinear, non-stationary and stochastic. To obtain this result, we also study a finite-horizon forward control problem that has randomized policies as decision variables. For this problem, we give an explicit expression for the optimal solution. Moreover, we turn our findings into algorithmic procedures and we show the effectiveness of our approach via both in-silico and experimental validations with real hardware. All the experiments confirm the effectiveness of our approach.