Abstract:Binary Neural Networks (BNNs) enable efficient deep learning by saving on storage and computational costs. However, as the size of neural networks continues to grow, meeting computational requirements remains a challenge. In this work, we propose a new form of quantization to tile neural network layers with sequences of bits to achieve sub-bit compression of binary-weighted neural networks. The method learns binary vectors (i.e. tiles) to populate each layer of a model via aggregation and reshaping operations. During inference, the method reuses a single tile per layer to represent the full tensor. We employ the approach to both fully-connected and convolutional layers, which make up the breadth of space in most neural architectures. Empirically, the approach achieves near fullprecision performance on a diverse range of architectures (CNNs, Transformers, MLPs) and tasks (classification, segmentation, and time series forecasting) with up to an 8x reduction in size compared to binary-weighted models. We provide two implementations for Tiled Bit Networks: 1) we deploy the model to a microcontroller to assess its feasibility in resource-constrained environments, and 2) a GPU-compatible inference kernel to facilitate the reuse of a single tile per layer in memory.
Abstract:Learning from the collective knowledge of data dispersed across private sources can provide neural networks with enhanced generalization capabilities. Federated learning, a method for collaboratively training a machine learning model across remote clients, achieves this by combining client models via the orchestration of a central server. However, current approaches face two critical limitations: i) they struggle to converge when client domains are sufficiently different, and ii) current aggregation techniques produce an identical global model for each client. In this work, we address these issues by reformulating the typical federated learning setup: rather than learning a single global model, we learn N models each optimized for a common objective. To achieve this, we apply a weighted distance minimization to model parameters shared in a peer-to-peer topology. The resulting framework, Iterative Parameter Alignment, applies naturally to the cross-silo setting, and has the following properties: (i) a unique solution for each participant, with the option to globally converge each model in the federation, and (ii) an optional early-stopping mechanism to elicit fairness among peers in collaborative learning settings. These characteristics jointly provide a flexible new framework for iteratively learning from peer models trained on disparate datasets. We find that the technique achieves competitive results on a variety of data partitions compared to state-of-the-art approaches. Further, we show that the method is robust to divergent domains (i.e. disjoint classes across peers) where existing approaches struggle.
Abstract:Compressed Neural Networks have the potential to enable deep learning across new applications and smaller computational environments. However, understanding the range of learning tasks in which such models can succeed is not well studied. In this work, we apply sparse and binary-weighted Transformers to multivariate time series problems, showing that the lightweight models achieve accuracy comparable to that of dense floating-point Transformers of the same structure. Our model achieves favorable results across three time series learning tasks: classification, anomaly detection, and single-step forecasting. Additionally, to reduce the computational complexity of the attention mechanism, we apply two modifications, which show little to no decline in model performance: 1) in the classification task, we apply a fixed mask to the query, key, and value activations, and 2) for forecasting and anomaly detection, which rely on predicting outputs at a single point in time, we propose an attention mask to allow computation only at the current time step. Together, each compression technique and attention modification substantially reduces the number of non-zero operations necessary in the Transformer. We measure the computational savings of our approach over a range of metrics including parameter count, bit size, and floating point operation (FLOPs) count, showing up to a 53x reduction in storage size and up to 10.5x reduction in FLOPs.
Abstract:The Dendritic Cell Algorithm (DCA) as one of the emerging evolutionary algorithms is based on the behavior of the specific immune agents; known as Dendritic Cells (DCs). DCA has several potentially beneficial features for binary classification problems. In this paper, we aim at providing a new version of this immune-inspired mechanism acts as a semi-supervised classifier which can be a defensive shield in network intrusion detection problem. Till now, no strategy or idea has already been adopted on the GetAntigen() function on detection phase, but randomly sampling entails the DCA to provide undesirable results in several cycles in each time. This leads to uncertainty. Whereas it must be accomplished by biological behaviors of DCs in tissues, we have proposed a novel strategy which exactly acts based on its immunological functionalities of dendritic cells. The proposed mechanism focuses on two items: First, to obviate the challenge of needing to have a preordered antigen set for computing danger signal, and the second, to provide a novel immune-inspired idea in order to non-random data sampling. A variable functional migration threshold is also computed cycle by cycle that shows necessity of the Migration threshold (MT) flexibility. A significant criterion so called capability of intrusion detection (CID) used for tests. All of the tests have been performed in a new benchmark dataset named UNSW-NB15. Experimental consequences demonstrate that the present schema dominates the standard DCA and has higher CID in comparison with other approaches found in literature.