Abstract:Air quality estimation can provide air quality for target regions without air quality stations, which is useful for the public. Existing air quality estimation methods divide the study area into disjointed grid regions, and apply 2D convolution to model the spatial dependencies of adjacent grid regions based on the first law of geography, failing to model the spatial dependencies of distant grid regions. To this end, we propose a Dual-view Supergrid-aware Graph Neural Network (DSGNN) for regional air quality estimation, which can model the spatial dependencies of distant grid regions from dual views (i.e., satellite-derived aerosol optical depth (AOD) and meteorology). Specifically, images are utilized to represent the regional data (i.e., AOD data and meteorology data). The dual-view supergrid learning module is introduced to generate supergrids in a parameterized way. Based on the dual-view supergrids, the dual-view implicit correlation encoding module is introduced to learn the correlations between pairwise supergrids. In addition, the dual-view message passing network is introduced to implement the information interaction on the supergrid graphs and images. Extensive experiments on two real-world datasets demonstrate that DSGNN achieves the state-of-the-art performances on the air quality estimation task, outperforming the best baseline by an average of 19.64% in MAE.
Abstract:Evolving temporal networks serve as the abstractions of many real-life dynamic systems, e.g., social network and e-commerce. The purpose of temporal network embedding is to map each node to a time-evolving low-dimension vector for downstream tasks, e.g., link prediction and node classification. The difficulty of temporal network embedding lies in how to utilize the topology and time information jointly to capture the evolution of a temporal network. In response to this challenge, we propose a temporal motif-preserving network embedding method with bicomponent neighbor aggregation, named TME-BNA. Considering that temporal motifs are essential to the understanding of topology laws and functional properties of a temporal network, TME-BNA constructs additional edge features based on temporal motifs to explicitly utilize complex topology with time information. In order to capture the topology dynamics of nodes, TME-BNA utilizes Graph Neural Networks (GNNs) to aggregate the historical and current neighbors respectively according to the timestamps of connected edges. Experiments are conducted on three public temporal network datasets, and the results show the effectiveness of TME-BNA.
Abstract:Predicting user positive response (e.g., purchases and clicks) probability is a critical task in Web applications. To identify predictive features from raw data, the state-of-the-art extreme deep factorization machine (xDeepFM) model introduces a compressed interaction network (CIN) to leverage feature interactions at the vector-wise level explicitly. However, since each hidden layer in CIN is a collection of feature maps, it can be viewed essentially as an ensemble of different feature maps. In this case, only using a single objective to minimize the prediction loss may lead to overfitting. In this paper, an ensemble diversity enhanced extreme deep factorization machine model (DexDeepFM) is proposed, which introduces the ensemble diversity measure in CIN and considers both ensemble diversity and prediction accuracy in the objective function. In addition, the attention mechanism is introduced to discriminate the importance of ensemble diversity measures with different feature interaction orders. Extensive experiments on two public real-world datasets show the superiority of the proposed model.