Abstract:We explore the impact of pre-training data composition on the performance of small language models in a sample-efficient setting. Using datasets limited to 10 million words, we evaluate several dataset sources, including child-directed speech (CHILDES), classic books (Gutenberg), synthetic data (TinyStories), and a mix of these (Mix) across different model sizes ranging from 18 million to 705 million parameters. Our experiments show that smaller models (e.g., GPT2-97M, GPT2-705M, Llama-360M) perform better when trained on more complex and rich datasets like Gutenberg. Models trained on the CHILDES and TinyStories datasets underperformed across all model sizes. These findings suggest that the optimal dataset for sample efficient training depends on the model size, and that neither child-directed speech nor simplified stories are optimal for language models of all sizes. We highlight the importance of considering both dataset composition and model capacity for effective sample efficient language model training.
Abstract:In this paper, we discuss the methods we applied at SemEval-2023 Task 10: Towards the Explainable Detection of Online Sexism. Given an input text, we perform three classification tasks to predict whether the text is sexist and classify the sexist text into subcategories in order to provide an additional explanation as to why the text is sexist. We explored many different types of models, including GloVe embeddings as the baseline approach, transformer-based deep learning models like BERT, RoBERTa, and DeBERTa, ensemble models, and model blending. We explored various data cleaning and augmentation methods to improve model performance. Pre-training transformer models yielded significant improvements in performance, and ensembles and blending slightly improved robustness in the F1 score.