Abstract:This paper presents a knowledge graph construction method for legal case documents and related laws, aiming to organize legal information efficiently and enhance various downstream tasks. Our approach consists of three main steps: data crawling, information extraction, and knowledge graph deployment. First, the data crawler collects a large corpus of legal case documents and related laws from various sources, providing a rich database for further processing. Next, the information extraction step employs natural language processing techniques to extract entities such as courts, cases, domains, and laws, as well as their relationships from the unstructured text. Finally, the knowledge graph is deployed, connecting these entities based on their extracted relationships, creating a heterogeneous graph that effectively represents legal information and caters to users such as lawyers, judges, and scholars. The established baseline model leverages unsupervised learning methods, and by incorporating the knowledge graph, it demonstrates the ability to identify relevant laws for a given legal case. This approach opens up opportunities for various applications in the legal domain, such as legal case analysis, legal recommendation, and decision support.
Abstract:In recent years, natural language processing has gained significant popularity in various sectors, including the legal domain. This paper presents NeCo Team's solutions to the Vietnamese text processing tasks provided in the Automated Legal Question Answering Competition 2023 (ALQAC 2023), focusing on legal domain knowledge acquisition for low-resource languages through data enrichment. Our methods for the legal document retrieval task employ a combination of similarity ranking and deep learning models, while for the second task, which requires extracting an answer from a relevant legal article in response to a question, we propose a range of adaptive techniques to handle different question types. Our approaches achieve outstanding results on both tasks of the competition, demonstrating the potential benefits and effectiveness of question answering systems in the legal field, particularly for low-resource languages.
Abstract:This paper presents the NOWJ team's approach to the COLIEE 2023 Competition, which focuses on advancing legal information processing techniques and applying them to real-world legal scenarios. Our team tackles the four tasks in the competition, which involve legal case retrieval, legal case entailment, statute law retrieval, and legal textual entailment. We employ state-of-the-art machine learning models and innovative approaches, such as BERT, Longformer, BM25-ranking algorithm, and multi-task learning models. Although our team did not achieve state-of-the-art results, our findings provide valuable insights and pave the way for future improvements in legal information processing.
Abstract:Multi-document summarization is challenging because the summaries should not only describe the most important information from all documents but also provide a coherent interpretation of the documents. This paper proposes a method for multi-document summarization based on cluster similarity. In the extractive method we use hybrid model based on a modified version of the PageRank algorithm and a text correlation considerations mechanism. After generating summaries by selecting the most important sentences from each cluster, we apply BARTpho and ViT5 to construct the abstractive models. Both extractive and abstractive approaches were considered in this study. The proposed method achieves competitive results in VLSP 2022 competition.