Abstract:We propose a new covert communication scheme that operates without pre-sharing side information and channel estimation, utilizing a Gaussian-distributed Grassmann constellation for noncoherent detection. By designing constant-amplitude symbols on the Grassmann manifold and multiplying them by random variables, we generate signals that follow an arbitrary probability distribution, such as Gaussian or skew-normal distributions. The mathematical property of the manifold enables the transmitter's random variables to remain unshared with the receiver, and the elimination of pilot symbols that could compromise covertness. The proposed scheme achieved higher covertness and achievable rates compared to conventional coherent Gaussian signaling schemes, without any penalty in terms of complexity.
Abstract:This paper proposes a joint channel and data estimation (JCDE) algorithm for uplink multiuser extremely large-scale multiple-input-multiple-output (XL-MIMO) systems. The initial channel estimation is formulated as a sparse reconstruction problem based on the angle and distance sparsity under the near-field propagation condition. This problem is solved using non-orthogonal pilots through an efficient low complexity two-stage compressed sensing algorithm. Furthermore, the initial channel estimates are refined by employing a JCDE framework driven by both non-orthogonal pilots and estimated data. The JCDE problem is solved by sequential expectation propagation (EP) algorithms, where the channel and data are alternately updated in an iterative manner. In the channel estimation phase, integrating Bayesian inference with a model-based deterministic approach provides precise estimations to effectively exploit the near-field characteristics in the beam-domain. In the data estimation phase, a linear minimum mean square error (LMMSE)-based filter is designed at each sub-array to address the correlation due to energy leakage in the beam-domain arising from the near-field effects. Numerical simulations reveal that the proposed initial channel estimation and JCDE algorithm outperforms the state-ofthe-art approaches in terms of channel estimation, data detection, and computational complexity.
Abstract:5G systems are being deployed all over the world and one key enabler of these systems is massive multiple-input multiple-output (MIMO). This technology has brought large performance gains in terms of serving many users. Despite the possibility to further exploit the spatial domain, there are situations where it is not possible to offer more than a single, or a few, data streams per user and where cell-edge coverage is an issue due to the lack of enough efficient channel scatterers. Looking ahead, distributed MIMO systems, where the antennas are spread over a larger area, are investigated for next generation systems. However, distributed MIMO comes with many practical deployment issues, making it a big challenge to adopt. As another way forward, we envision repeater-assisted cellular massive MIMO, where repeaters are deployed to act as channel scatterers to increase the rank of the channel and provide macro diversity for improved coverage and reliability. After elaborating on the requirements and hardware aspects of repeaters that enable this vision, we demonstrate through simulations the potential of repeater-assisted cellular massive MIMO to achieve distributed MIMO performance. Following this, we discuss open questions and future research directions.
Abstract:In wireless networks, frequent reference signal transmission for accurate channel reconstruction may reduce spectral efficiency. To address this issue, we consider to use a data-carrying reference signal (DC-RS) that can simultaneously estimate channel coefficients and transmit data symbols. Here, symbols on the Grassmann manifold are exploited to carry additional data and to assist in channel estimation. Unlike conventional studies, we analyze the channel estimation errors induced by DC-RS and propose an optimization method that improves the channel estimation accuracy without performance penalty. Then, we derive the achievable rate of noncoherent Grassmann constellation assuming discrete inputs in multi-antenna scenarios, as well as that of coherent signaling assuming channel estimation errors modeled by the Gauss-Markov uncertainty. These derivations enable performance evaluation when introducing DC-RS, and suggest excellent potential for boosting spectral efficiency, where interesting crossings with the non-data carrying RS occurred at intermediate signal-to-noise ratios.