Abstract:Epilepsy is a highly prevalent brain condition with many serious complications arising from it. The majority of patients which present to a clinic and undergo electroencephalogram (EEG) monitoring would be unlikely to experience seizures during the examination period, thus the presence of interictal epileptiform discharges (IEDs) become effective markers for the diagnosis of epilepsy. Furthermore, IED shapes and patterns are highly variable across individuals, yet trained experts are still able to identify them through EEG recordings - meaning that commonalities exist across IEDs that an algorithm can be trained on to detect and generalise to the larger population. This research proposes an IED detection system for the binary classification of epilepsy using scalp EEG recordings. The proposed system features an ensemble based deep learning method to boost the performance of a residual convolutional neural network, and a bidirectional long short-term memory network. This is implemented using raw EEG data, sourced from Temple University Hospital's EEG Epilepsy Corpus, and is found to outperform the current state of the art model for IED detection across the same dataset. The achieved accuracy and Area Under Curve (AUC) of 94.92% and 97.45% demonstrates the effectiveness of an ensemble method, and that IED detection can be achieved with high performance using raw scalp EEG data, thus showing promise for the proposed approach in clinical settings.
Abstract:Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
Abstract:Epilepsy is one of the most common brain diseases that affect more than 1\% of the world's population. It is characterized by recurrent seizures, which come in different types and are treated differently. Electroencephalography (EEG) is commonly used in medical services to diagnose seizures and their types. The accurate identification of seizures helps to provide optimal treatment and accurate information to the patient. However, the manual diagnostic procedures of epileptic seizures are laborious and highly-specialized. Moreover, EEG manual evaluation is a process known to have a low inter-rater agreement among experts. This paper presents a novel automatic technique that involves extraction of specific features from EEG signals using Dual-tree Complex Wavelet Transform (DTCWT) and classifying them. We evaluated the proposed technique on TUH EEG Seizure Corpus (TUSZ) ver.1.5.2 dataset and compared the performance with existing state-of-the-art techniques using overall F1-score due to class imbalance seizure types. Our proposed technique achieved the best results of weighted F1-score of 99.1\% and 74.7\% for seizure-wise and patient-wise classification respectively, thereby setting new benchmark results for this dataset.
Abstract:Electroencephalography is frequently used for diagnostic evaluation of various brain-related disorders due to its excellent resolution, non-invasive nature and low cost. However, manual analysis of EEG signals could be strenuous and a time-consuming process for experts. It requires long training time for physicians to develop expertise in it and additionally experts have low inter-rater agreement (IRA) among themselves. Therefore, many Computer Aided Diagnostic (CAD) based studies have considered the automation of interpreting EEG signals to alleviate the workload and support the final diagnosis. In this paper, we present an automatic binary classification framework for brain signals in multichannel EEG recordings. We propose to use Wavelet Packet Decomposition (WPD) techniques to decompose the EEG signals into frequency sub-bands and extract a set of statistical features from each of the selected coefficients. Moreover, we propose a novel method to reduce the dimension of the feature space without compromising the quality of the extracted features. The extracted features are classified using different Gradient Boosting Decision Tree (GBDT) based classification frameworks, which are CatBoost, XGBoost and LightGBM. We used Temple University Hospital EEG Abnormal Corpus V2.0.0 to test our proposed technique. We found that CatBoost classifier achieves the binary classification accuracy of 87.68%, and outperforms state-of-the-art techniques on the same dataset by more than 1% in accuracy and more than 3% in sensitivity. The obtained results in this research provide important insights into the usefulness of WPD feature extraction and GBDT classifiers for EEG classification.