Abstract:Learned sparse models such as SPLADE have successfully shown how to incorporate the benefits of state-of-the-art neural information retrieval models into the classical inverted index data structure. Despite their improvements in effectiveness, learned sparse models are not as efficient as classical sparse model such as BM25. The problem has been investigated and addressed by recently developed strategies, such as guided traversal query processing and static pruning, with different degrees of success on in-domain and out-of-domain datasets. In this work, we propose a new query processing strategy for SPLADE based on a two-step cascade. The first step uses a pruned and reweighted version of the SPLADE sparse vectors, and the second step uses the original SPLADE vectors to re-score a sample of documents retrieved in the first stage. Our extensive experiments, performed on 30 different in-domain and out-of-domain datasets, show that our proposed strategy is able to improve mean and tail response times over the original single-stage SPLADE processing by up to $30\times$ and $40\times$, respectively, for in-domain datasets, and by 12x to 25x, for mean response on out-of-domain datasets, while not incurring in statistical significant difference in 60\% of datasets.
Abstract:Sparse neural retrievers, such as DeepImpact, uniCOIL and SPLADE, have been introduced recently as an efficient and effective way to perform retrieval with inverted indexes. They aim to learn term importance and, in some cases, document expansions, to provide a more effective document ranking compared to traditional bag-of-words retrieval models such as BM25. However, these sparse neural retrievers have been shown to increase the computational costs and latency of query processing compared to their classical counterparts. To mitigate this, we apply a well-known family of techniques for boosting the efficiency of query processing over inverted indexes: static pruning. We experiment with three static pruning strategies, namely document-centric, term-centric and agnostic pruning, and we assess, over diverse datasets, that these techniques still work with sparse neural retrievers. In particular, static pruning achieves $2\times$ speedup with negligible effectiveness loss ($\leq 2\%$ drop) and, depending on the use case, even $4\times$ speedup with minimal impact on the effectiveness ($\leq 8\%$ drop). Moreover, we show that neural rerankers are robust to candidates from statically pruned indexes.