Abstract:Given the paramount importance of safety in the aviation industry, even minor operational anomalies can have significant consequences. Comprehensive documentation of incidents and accidents serves to identify root causes and propose safety measures. However, the unstructured nature of incident event narratives poses a challenge for computer systems to interpret. Our study aimed to leverage Natural Language Processing (NLP) and deep learning models to analyze these narratives and classify the aircraft damage level incurred during safety occurrences. Through the implementation of LSTM, BLSTM, GRU, and sRNN deep learning models, our research yielded promising results, with all models showcasing competitive performance, achieving an accuracy of over 88% significantly surpassing the 25% random guess threshold for a four-class classification problem. Notably, the sRNN model emerged as the top performer in terms of recall and accuracy, boasting a remarkable 89%. These findings underscore the potential of NLP and deep learning models in extracting actionable insights from unstructured text narratives, particularly in evaluating the extent of aircraft damage within the realm of aviation safety occurrences.
Abstract:Improvements in aviation safety analysis call for innovative techniques to extract valuable insights from the abundance of textual data available in accident reports. This paper explores the application of four prominent topic modelling techniques, namely Probabilistic Latent Semantic Analysis (pLSA), Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and Non-negative Matrix Factorization (NMF), to dissect aviation incident narratives using the Australian Transport Safety Bureau (ATSB) dataset. The study examines each technique's ability to unveil latent thematic structures within the data, providing safety professionals with a systematic approach to gain actionable insights. Through a comparative analysis, this research not only showcases the potential of these methods in aviation safety but also elucidates their distinct advantages and limitations.
Abstract:Aviation safety is paramount in the modern world, with a continuous commitment to reducing accidents and improving safety standards. Central to this endeavor is the analysis of aviation accident reports, rich textual resources that hold insights into the causes and contributing factors behind aviation mishaps. This paper compares two prominent topic modeling techniques, Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF), in the context of aviation accident report analysis. The study leverages the National Transportation Safety Board (NTSB) Dataset with the primary objective of automating and streamlining the process of identifying latent themes and patterns within accident reports. The Coherence Value (C_v) metric was used to evaluate the quality of generated topics. LDA demonstrates higher topic coherence, indicating stronger semantic relevance among words within topics. At the same time, NMF excelled in producing distinct and granular topics, enabling a more focused analysis of specific aspects of aviation accidents.