Abstract:Many modern wireless devices with accurate positioning needs also have access to vision sensors, such as a camera, radar, and Light Detection and Ranging (LiDAR). In scenarios where wireless-based positioning is either inaccurate or unavailable, using information from vision sensors becomes highly desirable for determining the precise location of the wireless device. Specifically, vision data can be used to estimate distances between the target (where the sensors are mounted) and nearby landmarks. However, a significant challenge in positioning using these measurements is the inability to uniquely identify which specific landmark is visible in the data. For instance, when the target is located close to a lamppost, it becomes challenging to precisely identify the specific lamppost (among several in the region) that is near the target. This work proposes a new framework for target localization using range measurements to multiple proximate landmarks. The geometric constraints introduced by these measurements are utilized to narrow down candidate landmark combinations corresponding to the range measurements and, consequently, the target's location on a map. By modeling landmarks as a marked Poisson point process (PPP), we show that three noise-free range measurements are sufficient to uniquely determine the correct combination of landmarks in a two-dimensional plane. For noisy measurements, we provide a mathematical characterization of the probability of correctly identifying the observed landmark combination based on a novel joint distribution of key random variables. Our results demonstrate that the landmark combination can be identified using ranges, even when individual landmarks are visually indistinguishable.
Abstract:Despite significant algorithmic advances in vision-based positioning, a comprehensive probabilistic framework to study its performance has remained unexplored. The main objective of this paper is to develop such a framework using ideas from stochastic geometry. Due to limitations in sensor resolution, the level of detail in prior information, and computational resources, we may not be able to differentiate between landmarks with similar appearances in the vision data, such as trees, lampposts, and bus stops. While one cannot accurately determine the absolute target position using a single indistinguishable landmark, obtaining an approximate position fix is possible if the target can see multiple landmarks whose geometric placement on the map is unique. Modeling the locations of these indistinguishable landmarks as a Poisson point process (PPP) $\Phi$ on $\mathbb{R}^2$, we develop a new approach to analyze the localizability in this setting. From the target location $\mathbb{x}$, the measurements are obtained from landmarks within the visibility region. These measurements, including ranges and angles to the landmarks, denoted as $f(\mathbb{x})$, can be treated as mappings from the target location. We are interested in understanding the probability that the measurements $f(\mathbb{x})$ are sufficiently distinct from the measurement $f(\mathbb{x}_0)$ at the given location, which we term localizability. Expressions of localizability probability are derived for specific vision-inspired measurements, such as ranges to landmarks and snapshots of their locations. Our analysis reveals that the localizability probability approaches one when the landmark intensity tends to infinity, which means that error-free localization is achievable in this limiting regime.