Abstract:We consider a distributed setup for reinforcement learning, where each agent has a copy of the same Markov Decision Process but transitions are sampled from the corresponding Markov chain independently by each agent. We show that in this setting, we can achieve a linear speedup for TD($\lambda$), a family of popular methods for policy evaluation, in the sense that $N$ agents can evaluate a policy $N$ times faster provided the target accuracy is small enough. Notably, this speedup is achieved by ``one shot averaging,'' a procedure where the agents run TD($\lambda$) with Markov sampling independently and only average their results after the final step. This significantly reduces the amount of communication required to achieve a linear speedup relative to previous work.
Abstract:Neural Temporal Difference (TD) Learning is an approximate temporal difference method for policy evaluation that uses a neural network for function approximation. Analysis of Neural TD Learning has proven to be challenging. In this paper we provide a convergence analysis of Neural TD Learning with a projection onto $B(\theta_0, \omega)$, a ball of fixed radius $\omega$ around the initial point $\theta_0$. We show an approximation bound of $O(\epsilon) + \tilde{O} (1/\sqrt{m})$ where $\epsilon$ is the approximation quality of the best neural network in $B(\theta_0, \omega)$ and $m$ is the width of all hidden layers in the network.