Abstract:The high configurability and low cost of Reflective Intelligent Surfaces (RISs) made them a promising solution for enhancing the capabilities of Beyond Fifth-Generation (B5G) networks. Recent works proposed to mount RISs on Unmanned Aerial Vehicles (UAVs), combining the high network configurability provided by RIS with the mobility brought by UAVs. However, the RIS represents an additional weight that impacts the battery lifetime of the UAV. Furthermore, the practicality of the resulting link in terms of communication channel quality and security have not been assessed in detail. In this paper, we highlight all the essential features that need to be considered for the practical deployment of RIS-enabled UAVs. We are the first to show how the RIS size and its power consumption impact the UAV flight time. We then assess how the RIS size, carrier frequency, and UAV flying altitude affects the path loss. Lastly, we propose a novel particle swarm-based approach to maximize coverage and improve the confidentiality of transmissions in a cellular scenario with the support of RISs carried by UAVs.