Abstract:We consider the problem of multi-product dynamic pricing in a contextual setting for a seller of differentiated products. In this environment, the customers arrive over time and products are described by high-dimensional feature vectors. Each customer chooses a product according to the widely used Multinomial Logit (MNL) choice model and her utility depends on the product features as well as the prices offered. Our model allows for heterogenous price sensitivities for products. The seller a-priori does not know the parameters of the choice model but can learn them through interactions with the customers. The seller's goal is to design a pricing policy that maximizes her cumulative revenue. This model is motivated by online marketplaces such as Airbnb platform and online advertising. We measure the performance of a pricing policy in terms of regret, which is the expected revenue loss with respect to a clairvoyant policy that knows the parameters of the choice model in advance and always sets the revenue-maximizing prices. We propose a pricing policy, named M3P, that achieves a $T$-period regret of $O(\sqrt{\log(dT) T})$ under heterogenous price sensitivity for products with features dimension of $d$. We also prove that no policy can achieve worst-case $T$-regret better than $\Omega(\sqrt{T})$.
Abstract:We study the pricing problem faced by a firm that sells a large number of products, described via a wide range of features, to customers that arrive over time. Customers independently make purchasing decisions according to a general choice model that includes products features and customers' characteristics, encoded as $d$-dimensional numerical vectors, as well as the price offered. The parameters of the choice model are a priori unknown to the firm, but can be learned as the (binary-valued) sales data accrues over time. The firm's objective is to minimize the regret, i.e., the expected revenue loss against a clairvoyant policy that knows the parameters of the choice model in advance, and always offers the revenue-maximizing price. This setting is motivated in part by the prevalence of online marketplaces that allow for real-time pricing. We assume a structured choice model, parameters of which depend on $s_0$ out of the $d$ product features. We propose a dynamic policy, called Regularized Maximum Likelihood Pricing (RMLP) that leverages the (sparsity) structure of the high-dimensional model and obtains a logarithmic regret in $T$. More specifically, the regret of our algorithm is of $O(s_0 \log d \cdot \log T)$. Furthermore, we show that no policy can obtain regret better than $O(s_0 (\log d + \log T))$.