Abstract:The current methods of assessing tendon health such as clinical examination, imaging techniques, and implanted pressure sensors, are often based on a subjective assessment or are not accurate enough, are extremely expensive, or are limited to relatively large damage such as partial or gross tear of the tendon and cannot accurately assess and monitor smaller damages such as micro tears or strains. This study proposes an acoustic-based wearable capable of estimating tendon load and predicting damage severity in both deep and superficial tendons. Our device consists of an array of acoustic transducers positioned around the targeted body area in the form of a cuff. One of the transducers generates an acoustic wave, which is capable of penetrating deep into the body. As these waves propagate through different tissues, they are influenced by the mechanical and geometrical properties of each tissue. The rest of the transducers are used to measure the propagated waves. The results suggest that the proposed wearable offers a promising alternative to existing superficial tendon monitoring wearable devices by improving the domain of reach. The proposed wearable shows robust performance in estimating the force applied to the tendon. It also can effectively be used to compare the health condition of two tendons and predict the type of damage.
Abstract:Every year more than 2.3 million joint replacement is performed worldwide. Around 10% of these replacements fail those results in revisions at a cost of $8 billion per year. In particular patients younger than 55 years of age face higher risks of failure due to greater demand on their joints. The long-term failure of joint replacement such as implant loosening significantly decreases the life expectancy of replacement. One of the main challenges in understanding and treatment of implant loosening is lack of a low-cost screening device that can detect or predict loosening at very early stages. In this work we are proposing a novel method of screening implant condition via ultrasonic signals. In this method we are applying ultrasonic signals to the joint via several piezoresistive discs while reading signals with several other piezoresistive sensors. We are introducing a new approachin interpreting ultrasonic signals and we prove in a finite element environment that our method can be used to assess replacement condition. We show how our new concept can detect and distinguish between different implant fixation failure types sizes and even locate the position of the failure. We believe this work can be a foundation for development of a new generation of ultrasonic diagnosis wearable devices.
Abstract:Plantar pressure measurements can provide valuable insight into various health characteristics in patients. In this study, we describe different plantar pressure devices available on the market and their clinical relevance. Current devices are either platform-based or wearable and consist of a variety of sensor technologies: resistive, capacitive, piezoelectric, and optical. The measurements collected from any of these sensors can be utilized for a range of clinical applications including patients with diabetes, trauma, deformity and cerebral palsy, stroke, cervical myelopathy, ankle instability, sports injuries, and Parkinsons disease. However, the proper technology should be selected based on the clinical need and the type of tests being performed on the device. In this review we provide the reader with a simple overview of the existing technologies their advantages and disadvantages and provide application examples for each. Moreover, we suggest new areas in orthopaedic that plantar pressure mapping technology can be utilized for increased quality of care.
Abstract:Roughly 1/3 of adults older than 65 fall each year, resulting in more than 3 million emergency room visits, thousands of deaths, and over $50 Billion in direct costs. The Centers for Disease Control and Prevention (CDC) estimate that 1/3 of falls are preventable with effective mitigation strategies, particularly for imbalance. Therefore, quantification of imbalance is being studied extensively in recent years. In this study we investigate the feasibility of plantar pressure mapping in balance assessment through a healthy human subject study. We used an in-house plantar pressure mapping device with high precision based on Frustrated Total Internal Reflection to measure subjects sway during the Romberg test. Through the measurements obtained from all subjects, we measured the minimum spatial resolution required for plantar pressure mapping devices in assessment of balance. We conclude that most of the current devices in the market lack the requirements for imbalance measurements.