Abstract:Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
Abstract:Machine learning (ML) techniques, especially neural networks (NNs), have shown promise in learning subgrid-scale (SGS) parameterizations for climate modeling. However, a major problem with data-driven parameterizations, particularly those learned with supervised algorithms, is instability when integrated with numerical solvers of large-scale processes. Current remedies are often ad-hoc and lack a theoretical foundation. Here, we combine ML theory and climate physics to address a source of instability in NN-based parameterization. We demonstrate the importance of learning spatially non-local dynamics using a 1D model of the quasi-biennial oscillation (QBO) with gravity wave (GW) parameterization as a testbed. While common offline metrics fail to identify shortcomings in learning non-local dynamics, we show that the receptive field (RF)-the region of the input an NN uses to predict an output-can identify instability a-priori. We find that NN-based parameterizations that seem to accurately predict GW forcings from wind profiles ($\mathbf{R^2 \approx 0.99}$) cause unstable simulations when RF is too small to capture the non-local dynamics, while NNs of the same size but large-enough RF are stable. Some architectures, e.g., Fourier neural operators, have inherently large RF. We also demonstrate that learning non-local dynamics can be crucial for the stability and accuracy of a data-driven spatiotemporal emulator of the entire zonal wind field. Given the ubiquity of non-local dynamics in the climate system, we expect the use of effective RF, which can be computed for any NN architecture, to be important for many applications. This work highlights the need to integrate ML theory with physics for designing/analyzing data-driven algorithms for weather/climate modeling.