Abstract:Large Language Models (LLMs) have fundamentally transformed approaches to Natural Language Processing (NLP) tasks across diverse domains. In healthcare, accurate and cost-efficient text classification is crucial, whether for clinical notes analysis, diagnosis coding, or any other task, and LLMs present promising potential. Text classification has always faced multiple challenges, including manual annotation for training, handling imbalanced data, and developing scalable approaches. With healthcare, additional challenges are added, particularly the critical need to preserve patients' data privacy and the complexity of the medical terminology. Numerous studies have been conducted to leverage LLMs for automated healthcare text classification and contrast the results with existing machine learning-based methods where embedding, annotation, and training are traditionally required. Existing systematic reviews about LLMs either do not specialize in text classification or do not focus on the healthcare domain. This research synthesizes and critically evaluates the current evidence found in the literature regarding the use of LLMs for text classification in a healthcare setting. Major databases (e.g., Google Scholar, Scopus, PubMed, Science Direct) and other resources were queried, which focused on the papers published between 2018 and 2024 within the framework of PRISMA guidelines, which resulted in 65 eligible research articles. These were categorized by text classification type (e.g., binary classification, multi-label classification), application (e.g., clinical decision support, public health and opinion analysis), methodology, type of healthcare text, and metrics used for evaluation and validation. This review reveals the existing gaps in the literature and suggests future research lines that can be investigated and explored.
Abstract:The escalating volume of collected healthcare textual data presents a unique challenge for automated Multi-Label Text Classification (MLTC), which is primarily due to the scarcity of annotated texts for training and their nuanced nature. Traditional machine learning models often fail to fully capture the array of expressed topics. However, Large Language Models (LLMs) have demonstrated remarkable effectiveness across numerous Natural Language Processing (NLP) tasks in various domains, which show impressive computational efficiency and suitability for unsupervised learning through prompt engineering. Consequently, these LLMs promise an effective MLTC of medical narratives. However, when dealing with various labels, different prompts can be relevant depending on the topic. To address these challenges, the proposed approach, QUAD-LLM-MLTC, leverages the strengths of four LLMs: GPT-4o, BERT, PEGASUS, and BART. QUAD-LLM-MLTC operates in a sequential pipeline in which BERT extracts key tokens, PEGASUS augments textual data, GPT-4o classifies, and BART provides topics' assignment probabilities, which results in four classifications, all in a 0-shot setting. The outputs are then combined using ensemble learning and processed through a meta-classifier to produce the final MLTC result. The approach is evaluated using three samples of annotated texts, which contrast it with traditional and single-model methods. The results show significant improvements across the majority of the topics in the classification's F1 score and consistency (F1 and Micro-F1 scores of 78.17% and 80.16% with standard deviations of 0.025 and 0.011, respectively). This research advances MLTC using LLMs and provides an efficient and scalable solution to rapidly categorize healthcare-related text data without further training.
Abstract:Patient experience and care quality are crucial for a hospital's sustainability and reputation. The analysis of patient feedback offers valuable insight into patient satisfaction and outcomes. However, the unstructured nature of these comments poses challenges for traditional machine learning methods following a supervised learning paradigm. This is due to the unavailability of labeled data and the nuances these texts encompass. This research explores leveraging Large Language Models (LLMs) in conducting Multi-label Text Classification (MLTC) of inpatient comments shared after a stay in the hospital. GPT-4o-Turbo was leveraged to conduct the classification. However, given the sensitive nature of patients' comments, a security layer is introduced before feeding the data to the LLM through a Protected Health Information (PHI) detection framework, which ensures patients' de-identification. Additionally, using the prompt engineering framework, zero-shot learning, in-context learning, and chain-of-thought prompting were experimented with. Results demonstrate that GPT-4o-Turbo, whether following a zero-shot or few-shot setting, outperforms traditional methods and Pre-trained Language Models (PLMs) and achieves the highest overall performance with an F1-score of 76.12% and a weighted F1-score of 73.61% followed closely by the few-shot learning results. Subsequently, the results' association with other patient experience structured variables (e.g., rating) was conducted. The study enhances MLTC through the application of LLMs, offering healthcare practitioners an efficient method to gain deeper insights into patient feedback and deliver prompt, appropriate responses.
Abstract:In the rapidly evolving field of healthcare and beyond, the integration of generative AI in Electronic Health Records (EHRs) represents a pivotal advancement, addressing a critical gap in current information extraction techniques. This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs) to efficiently extract entities from medical narratives and unstructured text generated throughout various phases of the patient hospital visit. By addressing the significant challenge of processing unstructured medical text, GAMedX leverages the capabilities of generative AI and LLMs for improved data extraction. Employing a unified approach, the methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon. The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98\%. This innovation enhances entity extraction, offering a scalable, cost-effective solution for automated forms filling from unstructured data. As a result, GAMedX streamlines the processing of unstructured narratives, and sets a new standard in NER applications, contributing significantly to theoretical and practical advancements beyond the medical technology sphere.