Abstract:Transonic buffet is a flow instability phenomenon that arises from the interaction between the shock wave and the separated boundary layer. This flow phenomenon is considered to be highly detrimental during flight and poses a significant risk to the structural strength and fatigue life of aircraft. Up to now, there has been a lack of an accurate, efficient, and intuitive metric to predict buffet and impose a feasible constraint on aerodynamic design. In this paper, a Physics-Assisted Variational Autoencoder (PAVAE) is proposed to identify dominant features of transonic buffet, which combines unsupervised reduced-order modeling with additional physical information embedded via a buffet classifier. Specifically, four models with various weights adjusting the contribution of the classifier are trained, so as to investigate the impact of buffet information on the latent space. Statistical results reveal that buffet state can be determined exactly with just one latent space when a proper weight of classifier is chosen. The dominant latent space further reveals a strong relevance with the key flow features located in the boundary layers downstream of shock. Based on this identification, the displacement thickness at 80% chordwise location is proposed as a metric for buffet prediction. This metric achieves an accuracy of 98.5% in buffet state classification, which is more reliable than the existing separation metric used in design. The proposed method integrates the benefits of feature extraction, flow reconstruction, and buffet prediction into a unified framework, demonstrating its potential in low-dimensional representations of high-dimensional flow data and interpreting the "black box" neural network.
Abstract:Aerodynamic performance evaluation is an important part of the aircraft aerodynamic design optimization process; however, traditional methods are costly and time-consuming. Despite the fact that various machine learning methods can achieve high accuracy, their application in engineering is still difficult due to their poor generalization performance and "black box" nature. In this paper, a knowledge-embedded meta learning model, which fully integrates data with the theoretical knowledge of the lift curve, is developed to obtain the lift coefficients of an arbitrary supercritical airfoil under various angle of attacks. In the proposed model, a primary network is responsible for representing the relationship between the lift and angle of attack, while the geometry information is encoded into a hyper network to predict the unknown parameters involved in the primary network. Specifically, three models with different architectures are trained to provide various interpretations. Compared to the ordinary neural network, our proposed model can exhibit better generalization capability with competitive prediction accuracy. Afterward, interpretable analysis is performed based on the Integrated Gradients and Saliency methods. Results show that the proposed model can tend to assess the influence of airfoil geometry to the physical characteristics. Furthermore, the exceptions and shortcomings caused by the proposed model are analysed and discussed in detail.
Abstract:Traditional airfoil parametric technique has significant limitation in modern aerodynamic optimization design.There is a strong demand for developing a parametric method with good intuitiveness, flexibility and representative accuracy. In this paper, two parametric generative schemes based on deep learning methods are proposed to represent the complicate design space under specific constraints. 1. Soft-constrained scheme: The CVAE-based model trains geometric constraints as part of the network and can provide constrained airfoil synthesis; 2. Hard-constrained scheme: The VAE-based model serves to generate diverse airfoils, while an FFD-based technique projects the generated airfoils to the final airfoils satisfying the given constraints. The statistical results show that the reconstructed airfoils are accurate and smooth without extra filters. The soft constrained scheme tend to synthesize and explore airfoils efficiently and effectively, concentrating to the reference airfoil in both geometry space and objective space. The constraints will loose for a little bit because the inherent property of the model. The hard constrained scheme tend to generate and explore airfoils in a wider range for both geometry space and objective space, and the distribution in objective space is closer to normal distribution. The synthesized airfoils through this scheme strictly conform with constraints, though the projection may produce some odd airfoil shapes.