IRIT-ADRIA, ANITI
Abstract:This paper considers the task of learning users' preferences on a combinatorial set of alternatives, as generally used by online configurators, for example. In many settings, only a set of selected alternatives during past interactions is available to the learner. Fargier et al. [2018] propose an approach to learn, in such a setting, a model of the users' preferences that ranks previously chosen alternatives as high as possible; and an algorithm to learn, in this setting, a particular model of preferences: lexicographic preferences trees (LP-trees). In this paper, we study complexity-theoretical problems related to this approach. We give an upper bound on the sample complexity of learning an LP-tree, which is logarithmic in the number of attributes. We also prove that computing the LP tree that minimises the empirical risk can be done in polynomial time when restricted to the class of linear LP-trees.
Abstract:Conditional preference statements have been used to compactly represent preferences over combinatorial domains. They are at the core of CP-nets and their generalizations, and lexicographic preference trees. Several works have addressed the complexity of some queries (optimization, dominance in particular). We extend in this paper some of these results, and study other queries which have not been addressed so far, like equivalence, thereby contributing to a knowledge compilation map for languages based on conditional preference statements. We also introduce a new parameterised family of languages, which enables to balance expressiveness against the complexity of some queries.
Abstract:Making a decision is often a matter of listing and comparing positive and negative arguments. In such cases, the evaluation scale for decisions should be considered bipolar, that is, negative and positive values should be explicitly distinguished. That is what is done, for example, in Cumulative Prospect Theory. However, contraryto the latter framework that presupposes genuine numerical assessments, human agents often decide on the basis of an ordinal ranking of the pros and the cons, and by focusing on the most salient arguments. In other terms, the decision process is qualitative as well as bipolar. In this article, based on a bipolar extension of possibility theory, we define and axiomatically characterize several decision rules tailored for the joint handling of positive and negative arguments in an ordinal setting. The simplest rules can be viewed as extensions of the maximin and maximax criteria to the bipolar case, and consequently suffer from poor decisive power. More decisive rules that refine the former are also proposed. These refinements agree both with principles of efficiency and with the spirit of order-of-magnitude reasoning, that prevails in qualitative decision theory. The most refined decision rule uses leximin rankings of the pros and the cons, and the ideas of counting arguments of equal strength and cancelling pros by cons. It is shown to come down to a special case of Cumulative Prospect Theory, and to subsume the Take the Best heuristic studied by cognitive psychologists.