Abstract:This paper explores the topic of transportability, as a sub-area of generalisability. By proposing the utilisation of metrics based on well-established statistics, we are able to estimate the change in performance of NLP models in new contexts. Defining a new measure for transportability may allow for better estimation of NLP system performance in new domains, and is crucial when assessing the performance of NLP systems in new tasks and domains. Through several instances of increasing complexity, we demonstrate how lightweight domain similarity measures can be used as estimators for the transportability in NLP applications. The proposed transportability measures are evaluated in the context of Named Entity Recognition and Natural Language Inference tasks.
Abstract:Currently, there is no consistent model for visually or formally representing the architecture of AI systems. This lack of representation brings interpretability, correctness and completeness challenges in the description of existing models and systems. DIAL (The Diagrammatic AI Language) has been created with the aspiration of being an "engineering schematic" for AI Systems. It is presented here as a starting point for a community dialogue towards a common diagrammatic language for AI Systems.