Abstract:In many applications, finding adequate labeled data to train predictive models is a major challenge. In this work, we propose methods to use group-level binary labels as weak supervision to train instance-level binary classification models. Aggregate labels are common in several domains where annotating on a group-level might be cheaper or might be the only way to provide annotated data without infringing on privacy. We model group-level labels as Class Conditional Noisy (CCN) labels for individual instances and use the noisy labels to regularize predictions of the model trained on the strongly-labeled instances. Our experiments on real-world application of land cover mapping shows the utility of the proposed method in leveraging group-level labels, both in the presence and absence of class imbalance.
Abstract:Many real-world phenomena are observed at multiple resolutions. Predictive models designed to predict these phenomena typically consider different resolutions separately. This approach might be limiting in applications where predictions are desired at fine resolutions but available training data is scarce. In this paper, we propose classification algorithms that leverage supervision from coarser resolutions to help train models on finer resolutions. The different resolutions are modeled as different views of the data in a multi-view framework that exploits the complementarity of features across different views to improve models on both views. Unlike traditional multi-view learning problems, the key challenge in our case is that there is no one-to-one correspondence between instances across different views in our case, which requires explicit modeling of the correspondence of instances across resolutions. We propose to use the features of instances at different resolutions to learn the correspondence between instances across resolutions using an attention mechanism.Experiments on the real-world application of mapping urban areas using satellite observations and sentiment classification on text data show the effectiveness of the proposed methods.