Abstract:Dialogue State Tracking (DST) is core research in dialogue systems and has received much attention. In addition, it is necessary to define a new problem that can deal with dialogue between users as a step toward the conversational AI that extracts and recommends information from the dialogue between users. So, we introduce a new task - DST from dialogue between users about scheduling an event (DST-USERS). The DST-USERS task is much more challenging since it requires the model to understand and track dialogue states in the dialogue between users and to understand who suggested the schedule and who agreed to the proposed schedule. To facilitate DST-USERS research, we develop dialogue datasets between users that plan a schedule. The annotated slot values which need to be extracted in the dialogue are date, time, and location. Previous approaches, such as Machine Reading Comprehension (MRC) and traditional DST techniques, have not achieved good results in our extensive evaluations. By adopting the knowledge-integrated learning method, we achieve exceptional results. The proposed model architecture combines gazetteer features and speaker information efficiently. Our evaluations of the dialogue datasets between users that plan a schedule show that our model outperforms the baseline model.
Abstract:In this paper, we propose a novel conservative chaotic standard map-driven dynamic DNA coding (encoding, addition, subtraction and decoding) for the image encryption. The proposed image encryption algorithm is a dynamic DNA coding algorithm i.e., for the encryption of each pixel different rules for encoding, addition/subtraction, decoding etc. are randomly selected based on the pseudorandom sequences generated with the help of the conservative chaotic standard map. We propose a novel way to generate pseudo-random sequences through the conservative chaotic standard map and also test them rigorously through the most stringent test suite of pseudo-randomness, the NIST test suite, before using them in the proposed image encryption algorithm. Our image encryption algorithm incorporates a unique feed-forward and feedback mechanisms to generate and modify the dynamic one-time pixels that are further used for the encryption of each pixel of the plain image, therefore, bringing in the desired sensitivity on plaintext as well as ciphertext. All the controlling pseudorandom sequences used in the algorithm are generated for a different value of the parameter (part of the secret key) with inter-dependency through the iterates of the chaotic map (in the generation process) and therefore possess extreme key sensitivity too. The performance and security analysis has been executed extensively through histogram analysis, correlation analysis, information entropy analysis, DNA sequence-based analysis, perceptual quality analysis, key sensitivity analysis, plaintext sensitivity analysis, etc., The results are promising and prove the robustness of the algorithm against various common cryptanalytic attacks.