Abstract:State-of-the-art face recognition algorithms are able to achieve good performance when sufficient training images are provided. Unfortunately, the number of facial images is limited in some real face recognition applications. In this paper, we propose ComplexFace, a novel and effective algorithm for face recognition with limited samples using complex number based data augmentation. The algorithm first generates new representations from original samples and then fuse both into complex numbers, which avoids the difficulty of weight setting in other fusion approaches. A test sample can then be expressed by the linear combination of all the training samples, which mapped the sample to the new representation space for classification by the kernel function. The collaborative representation based classifier is then built to make predictions. Extensive experiments on the Georgia Tech (GT) face database and the ORL face database show that our algorithm significantly outperforms existing methods: the average errors of previous approaches ranging from 31.66% to 41.75% are reduced to 14.54% over the GT database; the average errors of previous approaches ranging from 5.21% to 10.99% are reduced to 1.67% over the ORL database. In other words, our algorithm has decreased the average errors by up to 84.80% on the ORL database.
Abstract:This paper addresses the task of nuclei segmentation in high-resolution histopathological images. We propose an auto- matic end-to-end deep neural network algorithm for segmenta- tion of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the- art methods. Moreover, it is efficient that one 1000X1000 image can be segmented in less than 5 seconds. This makes it possible to precisely segment the whole-slide image in acceptable time