Abstract:In this paper, we propose an acceleration of the exact k-means++ algorithm using geometric information, specifically the Triangle Inequality and additional norm filters, along with a two-step sampling procedure. Our experiments demonstrate that the accelerated version outperforms the standard k-means++ version in terms of the number of visited points and distance calculations, achieving greater speedup as the number of clusters increases. The version utilizing the Triangle Inequality is particularly effective for low-dimensional data, while the additional norm-based filter enhances performance in high-dimensional instances with greater norm variance among points. Additional experiments show the behavior of our algorithms when executed concurrently across multiple jobs and examine how memory performance impacts practical speedup.
Abstract:Since the rise of Large Language Models (LLMs) a couple of years ago, researchers in metaheuristics (MHs) have wondered how to use their power in a beneficial way within their algorithms. This paper introduces a novel approach that leverages LLMs as pattern recognition tools to improve MHs. The resulting hybrid method, tested in the context of a social network-based combinatorial optimization problem, outperforms existing state-of-the-art approaches that combine machine learning with MHs regarding the obtained solution quality. By carefully designing prompts, we demonstrate that the output obtained from LLMs can be used as problem knowledge, leading to improved results. Lastly, we acknowledge LLMs' potential drawbacks and limitations and consider it essential to examine them to advance this type of research further.