Abstract:The prevalence of multi-modal content on social media complicates automated moderation strategies. This calls for an enhancement in multi-modal classification and a deeper understanding of understated meanings in images and memes. Although previous efforts have aimed at improving model performance through fine-tuning, few have explored an end-to-end optimization pipeline that accounts for modalities, prompting, labeling, and fine-tuning. In this study, we propose an end-to-end conceptual framework for model optimization in complex tasks. Experiments support the efficacy of this traditional yet novel framework, achieving the highest accuracy and AUROC. Ablation experiments demonstrate that isolated optimizations are not ineffective on their own.
Abstract:We propose Texture Edge detection using Patch consensus (TEP) which is a training-free method to detect the boundary of texture. We propose a new simple way to identify the texture edge location, using the consensus of segmented local patch information. While on the boundary, even using local patch information, the distinction between textures are typically not clear, but using neighbor consensus give a clear idea of the boundary. We utilize local patch, and its response against neighboring regions, to emphasize the similarities and the differences across different textures. The step of segmentation of response further emphasizes the edge location, and the neighborhood voting gives consensus and stabilize the edge detection. We analyze texture as a stationary process to give insight into the patch width parameter verses the quality of edge detection. We derive the necessary condition for textures to be distinguished, and analyze the patch width with respect to the scale of textures. Various experiments are presented to validate the proposed model.