Abstract:The performance of point cloud 3D object detection hinges on effectively representing raw points, grid-based voxels or pillars. Recent two-stage 3D detectors typically take the point-voxel-based R-CNN paradigm, i.e., the first stage resorts to the 3D voxel-based backbone for 3D proposal generation on bird-eye-view (BEV) representation and the second stage refines them via the intermediate point representation. Their primary mechanisms involve the utilization of intermediary keypoints to restore the substantial 3D structure context from the converted BEV representation. The skilled point-voxel feature interaction, however, makes the entire detection pipeline more complex and compute-intensive. In this paper, we take a different viewpoint -- the pillar-based BEV representation owns sufficient capacity to preserve the 3D structure. In light of the latest advances in BEV-based perception, we devise a conceptually simple yet effective two-stage 3D detection architecture, named Pillar R-CNN. On top of densified BEV feature maps, Pillar R-CNN can easily introduce the feature pyramid architecture to generate 3D proposals at various scales and take the simple 2D R-CNN style detect head for box refinement. Our Pillar R-CNN performs favorably against state-of-the-art 3D detectors on the large-scale Waymo Open Dataset but at a small extra cost. It should be highlighted that further exploration into BEV perception for applications involving autonomous driving is now possible thanks to the effective and elegant Pillar R-CNN architecture.
Abstract:Real-time and high-performance 3D object detection is of critical importance for autonomous driving. Recent top-performing 3D object detectors mainly rely on point-based or 3D voxel-based convolutions, which are both computationally inefficient for onboard deployment. While recent researches focus on point-based or 3D voxel-based convolutions for higher performance, these methods fail to meet latency and power efficiency requirements especially for deployment on embedded devices. In contrast, pillar-based methods use merely 2D convolutions, which consume less computation resources, but they lag far behind their voxel-based counterparts in detection accuracy. However, the superiority of such 3D voxel-based methods over pillar-based methods is still broadly attributed to the effectiveness of 3D convolution neural network (CNN). In this paper, by examining the primary performance gap between pillar- and voxel-based detectors, we develop a real-time and high-performance pillar-based detector, dubbed PillarNet. The proposed PillarNet consists of a powerful encoder network for effective pillar feature learning, a neck network for spatial-semantic feature fusion and the commonly used detect head. Using only 2D convolutions, PillarNet is flexible to an optional pillar size and compatible with classical 2D CNN backbones, such as VGGNet and ResNet. Additionally, PillarNet benefits from our designed orientation-decoupled IoU regression loss along with the IoU-aware prediction branch. Extensive experimental results on large-scale nuScenes Dataset and Waymo Open Dataset demonstrate that the proposed PillarNet performs well over the state-of-the-art 3D detectors in terms of effectiveness and efficiency. Code will be made publicly available.