Abstract:Emotion recognition has received considerable attention from the Computer Vision community in the last 20 years. However, most of the research focused on analyzing the six basic emotions (e.g. joy, anger, surprise), with a limited work directed to other affective states. In this paper, we tackle sentimentality (strong feeling of heartwarming or nostalgia), a new emotional state that has few works in the literature, and no guideline defining its facial markers. To this end, we first collect a dataset of 4.9K videos of participants watching some sentimental and non-sentimental ads, and then we label the moments evoking sentimentality in the ads. Second, we use the ad-level labels and the facial Action Units (AUs) activation across different frames for defining some weak frame-level sentimentality labels. Third, we train a Multilayer Perceptron (MLP) using the AUs activation for sentimentality detection. Finally, we define two new ad-level metrics for evaluating our model performance. Quantitative and qualitative results show promising results for sentimentality detection. To the best of our knowledge this is the first work to address the problem of sentimentality detection.
Abstract:In this paper we introduce AFFDEX 2.0 - a toolkit for analyzing facial expressions in the wild, that is, it is intended for users aiming to; a) estimate the 3D head pose, b) detect facial Action Units (AUs), c) recognize basic emotions and 2 new emotional states (sentimentality and confusion), and d) detect high-level expressive metrics like blink and attention. AFFDEX 2.0 models are mainly based on Deep Learning, and are trained using a large-scale naturalistic dataset consisting of thousands of participants from different demographic groups. AFFDEX 2.0 is an enhanced version of our previous toolkit [1], that is capable of tracking efficiently faces at more challenging conditions, detecting more accurately facial expressions, and recognizing new emotional states (sentimentality and confusion). AFFDEX 2.0 can process multiple faces in real time, and is working across the Windows and Linux platforms.